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3 I. INTRODUCTION

This report covers a very diverse, multi-year effort to

I explore and develop the role of optical computing for SDI

purposes. Part of this effort was through subcontractors

whose final eports are separately appended. Other parts of

3 this work, wer involved in efforts to unify and publicize

the activity o\ SDI in optical computing. We believe this

5 effort was important in counteracting the assertions made by

disgruntled scientists in other fields that SDI funding was

S only for "mediocre scien t7' The U*# effort was pr-iarily

3 in two fields: Optical Algebra and Massive Parallel

Holographic Interconnection. 'In addition to that,Nthere was

3 work on a variety of other activities such as pattern

recognition, optical interconnection, and low energy optical

computing. -This report will attempt to organize, capsulize,

3 and comment upon those various activities. In addition, we

include some of the relevant technical documents as

3 appendixes in order to provide more detail for those who wish

to have it. Finally, we offer a program wrap-up which

I demonstrates quite conclusively that the effort under this

contract was not only fruitful, but also generative of

considerable current and future activity. Thus, this program

1 has planted seeds that will lead, in a significant degree, to

the accomplishment of the original goal of making optical

3 computing useful for SDI and for America.

i1
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3 II. OPTICAL ALGEBRA

Optics has been suggested for algebra for many years,

3 because there are geometry in configurations which permit it

to be done extremely rapidly. Before our work, the major

problem with optical algebra wa-4 that high accuracy was

5 essentially unobtainable-, One of the primary goals of our

program was to show that wecould use low accuracy optics for

3 the computationally intense part of algebraic computations

and bootstrap the accuracy with moderately high accuracy

I digital electronics in very simple, hard-wired

configurations. Every technical library has many shelves
>~ ( " O I - -

full of books on ntfmerical algebra. All of them assure the

* reader that low accuracy processors are worthless in

obtaining even moderately accurate results for any realistic

3 problem and that for ill-conditions or singular equation

sets, low accuracy processors are worthless. If we believe

the results of the great mathematicians, who wrote those

3 books, it is clear that optical algebra is doomed unless it

is possible to somehow change the rules or change the

3 problems. There follows an account of exactly how we did

that.

IAccording to various estimates, somewhere between 50%
and 75% of all CPU time in the United States is spent in

solving some sort of linear algebra. Examples include least

3 squares analysis, antenna beam steering, linear regression,

computational fluid dynamics, finite element analysis, or

2
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simply N linear equations with N unknowns.

Other nonlinear alqebra problems are also important.

3 These include image processing, linear programming, and super

resolution.

To the extent that optics can solve such problems in a

parallel fashion, it can lead to small fast processors which

would greatly improve the utility of trackers, radar, sonar,

5 etc.

WHAT IS THE CURRENT STATUS?

3 We want to solve problems like

2 x 1 + 3 x 2 + X 3 =4

1 3 x 1 + x 2 + 3 x 3 = 2

3 x , + 4 x2 + 7 x 3 = 1

We can represent these generally as

i A x =b.

In this case

A=

b [2] and x= [2]
°1  X=I X X

i The matrix A and the vector b are given. We seek the vector

X.

3
U
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There is a way to assign a single number (a "norm")

I to vectors and matrices. We normally use the Euclidean norm,

i e.g.

ix 11 [ x +2 + x3

The word "solve" has two different meanings. We

presume there is a "true" answer xT. We can say we have an

e - accurate solution if

I x- , 1 < 6 .
A weaker sense of "solve" is

3 Ii b - A x II < e.
This is weaker in the rough sense that some good solutions in

I this sense may not be close to x;. On the other hand, for

many problems, this "low residual" solution is perfectly

adequate. The Bimodal Optical Computer (BOC) minimizes the

3 residual.

One speaks of computational complexity in terms of how

something scales with some resource. We will speak of

spatial and temporal complexity. We will represent an N x N

matrix in parallel using N2 numbers. We say the spatial

3 complexity scales on the order of N2, written O(N2). We will

show that the temporal complexity is 0(1), i.e., independent

of N, provided that N is small enough to be represented

spatially in our processor.

4
1 4
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The most basic concepts are over a century old (due to

* Lord Kelvin).

(1) We use a fast, low-accuracy processor to

obtain a first guess x0,

3 (2) We use a slow, accurate processor to evaluate

the residual r 0 = b - A x0,

3 if [ r0 11 < C, stop.

(3) Otherwise, use the low accuracy solver to

3 solve for Ax 0 = r 0 . If we could solve that

3 problem zurately, then x, = x0 + AX0 would

have zero residual. Thus,

1 AxI = A (x 0 + A x0)

= A x o + A A x o

= A x0 + r o

= A x + b - A x0

= b.

(4) Use the slow, accurate processor to evaluate

r I = b - A x1, if II r, II < e, stop. Otherwise

go to (3).

* Some algebra problems resist accurate solution more than

others. In high school, we solved N=2 problems graphically.I

1 (- X I

1 5
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The solution is x. Cs Problems like this are said to

be "well conditioned" and are quite rare in real life. A

3 more common case is

xi 
EQUATI ON 1

EO.UATION 2

U
I X1

I

* Such problems are said to be "ill conditioned." If the lines

are parallel, we say A is "singular." Let us now make this

somewhat more rigorous. Let us define a "condition number"

x(A) = II All I • A' II.

I Then

, (11 x II) = x (A) e (P),

where

wher (ii x ) = relative error in the result and

e (P) = relative accuracy of the processor.

*6I
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If we have e (P) = 0.1 (very good optics) and X (A) = 10

(wonderfully benign problem),

£ 1 (11 X II) = 1,

i.e., 100% errors are likely.

3 This is why we go to 32 bit floating point electronics. No

one wants an answer accurate to one part in 232 (- 4 x 109).

I We need that to get meaningful answers for large X. The

3 ultimate ill-conditioning, singularity, corresponds to

infinite X. Such problems are common.

I In roughly 1985, Caulfield showed that this iterative

* process converges (roughly) if

S(P) < 2x(A)

For good optics, e (P) = 0.1. Thus we need

IX (A) < 5

5 to guarantee solution. This is silly. No real problems are

so benign.

I In 1987, we showed that replacing A by A' = A + E where

E is an error matrix and

III E 1i / I A iii<< 1,
3 leads to convergence for all problems independently of X.

For large X, the x which minimizes I1 r 11 may be less close

I to x than would be the case for small X. Nevertheless, we

* can drive 1 r II to zero in very few iterations even for

singular matrices. Call this Breakthrough 1.

3 To do the fast, low-accuracy solution 0 (1) in time; we

I 7
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N To do the fast, low-accuracy solution 0 (1) in time; we

5 use another trick. We employ a parallel A x = y device.

I Xl A >Y

I XM- YM

U These are easy in optics. Wai Cheng and Caulfield showed

that if we correct Xk, with a signal proportional to bk - Yk,

for all k, then this system would "relax from any starting x

3 to one satisfying A x = b (in the low 1i r II sense) under the

circumstance that A is "positive definite." To explain this,

3 we need one more diversion.

A vector e such that

A Ae =A e,

3 where A is a scalar, is said to be an "eigenvalue." Let us

arrange the eigenvalues of A such that

A, < A2 < . . . < A r

(r connotes "rank," a concept we choose not to define here).

Interestingly,

I X (A) = 1 Ar I/A 11I

8I
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The interesting thing for our purposes is that the relaxation

3 processor converges at a rate (roughly) of

e I t

Obviously if A, > 0, it does not converge. Here t is

3 normalized by the round trip time in the system. A matrix

for which A, > 0, is said to be positive definite. A matrix

I

i can undergo a row-for-column switch to form a transpose

B BT 13[
1 2 4 "

Since the matrix elements may be complex, we can complex

* conjugate a matrix A to get A*. We call

(A*)' = (AT)* = A",

the Hermitian of A. For any matrix both AA and AHA are

nonnegative definite (A1 > 0). We noted that AHA + E and

AAH + E are positive definite if E > 0.

3 Note, though,
Ax=b

AHA x = A" b.

3 Write

i and

C = AH b.

I9
I



I

Then
3 Bx=c

and B is nonnegative definite (likewise for AA"). Applying

our method to this makes all methods converge even though

t (A"A) = A (AA") = A2(A),

a normally disastrous event. These realizations are

3 Breakthrough 2.

Many other things done in BOCs are pretty, but those two

I are essence. Of the two, Breakthrough 1 is essential.

Breakthrough 2 allows 0 (1) solutions.

SUMMARY

I CONVENTIONAL BIMODAL
ALGEBRA ON OPTICAL3 DIGITAL COMPUTERS COMPUTERS

* SEEKS 1 x - x, l < IE SEEKS i b - A x i1 <e

I * REQUIRES ROUGHLY 0 0 (1) TEMPORAL
0 (N3 ) TEMPORAL COMPLEXITY

i COMPLEXITY

* ALGORITHM MATCHED CONSTANT ALGORITHM
TO PROBLEM SUFFICES

e (I x ) x (A) b- A x I ->0
INDEPENDENTLY OF x(A)

I * E ¢II x aI) a E (P) II b - A x II < E
INDEPENDENTLY OF E (P)I

The highlights of this period include a laboratory

demonstration of an 0 (1) time solver of even singular matrix

3 equations and the first vigorous mathematical proof of how

this works. Appendix A gives those details.

* 10m
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In the appendix, we show papers from optics journals and

3 mathematics journals giving in mathematical detail the proof

in illustration that these concepts are workable. In terms

U of applications to SDI, these might range from signal

3 processing (where constrained linear equations lead to fast

image restoration) to phased array radar (where the magnitude

3 of jammer signals is essentially irrelevant and processor

speed is independent of the number of elements in the radar).

3 While IBM is working on the approach we developed as a

possible electronic product, Nodal Systems Corporation is

planning on investing tens of millions of dollars to develop

3 this technology as an optical algebra processor. That

processor would be able to operate on very large (tens of

* thousands in each dimension) algebraic problems and achieve

high accuracy even for ill-conditioned systems at very high

* speed.

III. MASSIVE PARALLEL INTERCONNECTION

Before this program, what was meant by massive parallel

* interconnection was the connection of each element of a one

dimensional optical input to each element of a one

5 dimensional optical output. If both input and output had

dimensionality N, then there were N2 parallel, weighted

optical interconnections. It was argued that this offered an

3 advantage over electronics. The argument may well be correct

for a large N, but it is not altogether certain. To achieve

3 an indisputable advantage for optics over electronics, we

sought to connect a N x N input array to a N x N output array

I
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using N4 parallel weighted interconnections. For large N

3 (100 to 1000), the number of parallel weighted

interconnections is significantly more than can ever be

I accomplished with electronics. Let us try to justify that

statement by considering connecting a 1000 x 1000 array of

electrical signals to a 1000 x 1000 array of other electrical

1 elements using wires. By this conceptual design, we will

allow ourselves 22nd century technology. For instance, we

3 will assume that the interconnections can be made with

submicron diameter wires such that the wires plus insulators

are only one micron in diameter. This means that the full

3 set of 1012 wires could fit in a very small cross sectional

area of only one meter by one meter. Actually, of course,

3 that is not the case. The reason a much larger area will be

required is that the wires must be scrambled and criss-cross

i one another. If we are very clever, perhaps we could fit

that into a two meter by two meter area. The length of that

bundle of wires would have to exceed the width. We can

3 optimistically assume that the length of the interconnection

bundle will be only four meters. Thus, the whole

5 interconnection can fit in a package only two meters by two

meters by four meters. SDI will not fly this in the head of

a missile, but the assembly of that many wires can at least

3 be done. Some technology, not known to us, must be used to

set the resistances of the various wires (the weights).

3 Since we don't know what that technology is, we will not

explain it here. The interaction among currents in those

I
12I
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I various wires will be very severe. This will vastly increase

both the delays (which will be quite variable among

interconnections) and the required power. Let us again

* invoke future technological wonders and assume those problems

can be made to vanish or be negligible. Then the sole

remaining problem is simply to bond the 1012 submicron wires

3 to the appropriate bonding pads. Again invoking 21st century

technology, we assume a bonding machine can be made that

3 makes 1000 perfect bonds of submicron wires to appropriate

bonding pads every second. Such a bonding machine would be a

I great marvel indeed, but it would have to operate

continuously for four years just to hook up the system. Of

course, we have neglected the question of how one might check

3 out such a system. Nevertheless, these considerations

suggest that, for all practical purposes, such

3 interconnection is impossible with electronics.

BASIC CONCEPT

Fig. 2 shows the basic concept schematically. The input

* Iis a two dimensional array of modulators (A Spatial Light

Modulator or SLM). In this drawing, it is shown as a

3 transmissive SLM. In other cases, it can reflective. The

two dimensional output array can be thought of as detectors,

I bi-stable optical devices, or any other useful components. A

n lens or lens system images a two dimensional array of

holograms onto the two dimensional array of outputs through

3 the SLM. All of the holograms are simultaneously

illuminated. The ij hologram is imaged onto the ij SLM. The

I 13
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strength of light from the ii hologram to the kl element of

I the SLM may be called Tijkl. The amount of light transmitted

through the kl element depends on the input which we may call

I akL. Thus the transmitted light from the ij hologram through

the kl element is Tijkk akl. The lens collects such

contributions over the entire SLM. That is, the amount of

3 light arriving at the ij element in the output plane is

3 bij = Z TijkL akt.

kl

3 We recognize this as the ij element of the product of the two

dimensional matrix A whose ij element is aij with the four

3 dimensional tensor whose ijkl component is Tijkt. Rewriting

this in more compact form, we have

3 B = TA.

A very detailed analysis of the potientiality and limitations

of this technique may be found among the references in

3 Appendix B.

APPLICATIONS

3 Numerous applications of this technology can be found.

The one developed especially for this program was massively

parallel cellular array processors. This is discussed in the

3 appendix. Numerous other applications are obvious and have

begun to be discussed in the literature. Perhaps the most

I obvious is optical neural networks. Other applications are

generalized Hough transforms and digital optical computers.

I14
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1 generalized Hough transforms and digital optical computers.

In another portion of the overall ONR/SDI program, Peter

Guilfoyle and co-workers made significant improvements in the

digital optical computer concepts first described by

Morozov*. If we are willing to simple pre and post processing

I of input data, we can generalize this technique to become a

3 general purpose optical computer. This work has attracted

world wide attention and numerous citations. In addition,

both the neural network aspects and the digital optical

computing aspects are being pursued at multi-million dollar

I levels by Nodal Systems Corporation. Again, the program has

done its job of stimulating an entire new area (Appendix C).

IV. OTHER DEVELOPMENTS

* An important early paper of this program was on optical

Fredkin gates. Since the publication of that paper, this

3 work has diverged into two directions. First, there has been

considerable work in extending the two dimensional Fredkin

I gate array to three dimensions. This appears to have some

real advantages over prior technology. Second, this work has

led (under other sponsorship) to the realization that optics

3 can accomplish what computer theorist have been dreaming of

for last 15 years: the performance of computing operations

I at less than kT per operation. All of these matters are

discussed in substantial detail in appendix C.

I * H. E. Elion and V. N. Morozov, "Optoelectronic Switching
Systems in Telecommunications and Computers," Marcel3 Dekker, N.Y. (1984).

I
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There was important early work in making optical pattern

* recognition filters that not only had the invariance

properties which are being gladly sought but also the

i property of being very easy to fabricate. This work has led

to considerable progress. We are now at the point where

immensely powerful optical pattern recognition mask can be

3 designed and fabricated in a very simple way.

Finally, there was some preliminary work on how these

5 concepts apply to optical neural networks.

These areas are expanded upon in Appendix D.

I V. CONCLUSIONS

i A variety of totally new concepts were introduced and

established as feasible during the course of this contract.

* Each of them is a subject of intense continuing research

around the world. Many of them are now being pursued

3 commercially in America and will undoubtedly find their way

into the SDI effort of our country. In addition, the massive

commercial applications anticipated and funded as a result of

work reported here constitute an outstanding example of the

usefulness of the SDI program in creating new technology of

5 broad general usefulness for America.

I
i
i
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APPENDIX A

U BIMODAL OPTICAL COMPUTERSI
The first paper in this field (Appl. Opt. 25, 3128) was

3 completed before the beginning of this contract. It showed (as
described in the main text of our report) the severe limitations in3 principle on Bimodal Optical Computer (BOC) convergence.

The first work under this contract (Opt. Eng. 26, 22) showed
* that in many cases convergence occurred even when it could not

be guaranteed.

I The two key papers showed how to get convergence for all
matrices (Appl. Opt. 26, 4906) and why this method works
(Linear and Multilinear Algebra 25, 215). The experimental
demonstration followed immediately (SPIE 936, 315).

Extending this to new algebra problems like eigen problems
(SPIE 634, 86) and nonlinear algebra (SPIE 936, 309) increased
the utility.

The ultimate SDI application is jam resistant high speed radar
array data processing (Microwave and Optical Technology Letters

3 1,236).

I
I
I
I
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Bimodal optical computers

H. John Caulfield, John H. Gruninger, Jacques E. Ludman, K. Steiglitz, H. Rabitz, J. Gelfand, and E. Tsoni1
Analog optical solutions of numerical problems tend to be fast, simple, and inaccurate. Digital optical or
electronic solutions to the same problems tend to be slower, harder, and more accurate. In circumstances
outlined here, hybrid analog-digital systems can be built which give the accuracy of digital solutions with
intermediate degrees of speed and simplicity. Because at any instant these processors are working in either

the analog or the digital mode, we call them bimodal optical computers.U
I. f basic problem; a memory; and an accurate (digital or

While optical digital computers have been drawing hybrid) calculator of the solution accuracy. The basic
great attention,1 -7 it is only in analog computation that cycle is as follows:

optics is known to excel over electronics. In this paper calculate an approximate solution with the optical
we offer a limited exploration of a proposed link be- analog processor;
tween these two fields of optics. That is, we will dis- remember that solution to high accuracy;
cuss hybrid optical numerical processors. We seek the calculate the solution accuracy with the accurate
numerical accuracy of digital computing while still computer;
retaining some of the speed and power advantages of repose the problem as an error reduction problem;
analog optics. To do this we must mix analog optics solve with an optical analog processor;
with digital electronics (or electrooptics or optics) to using the just-calculated improvement and the
bootstrap the accuracy. We call this hybrid a bimodal stored prior solution, calculate and remember the im-
optical computer. proved solution with the accurate computer;

While some of these concepts are new to optics, calculate the solution accuracy with the accurate
many are not new to science in general. Our purpose computer;
in this paper is to call the attention of optics workers to if the solution is accurate enough, stop;
this area. We will present a general approach and if not, recycle.
then specialize to one very specific and simple prob- Clearly, the convergence condition is that the error
lem: Linear algebraic equations. The method is be reduced in each iteration. If this is the case, as we
clearly extendable to nonlinear problems and other will show, the optical analog processor no longer limits
linear problems. solution accuracy.

In a purely digital system, the primary consumer of
II. Generic System space, weight, power, time, and cost would be the solv-

The generic system is comprised of three properly er (direct or iterative) of the problem solved by the
interacting systems: an optical analog solver of the relatively small, low-weight, power conservative, fast,

and inexpensive optical analog processor. Thus there
is the potential for significant overall system improve-
ment using this hybrid approach.

There are two major forms the accurate processor
H. J. Caulfield is with University of Alabama in Huntsville, Center can take. First, it can be a special purpose, fast, inex-

for Applied Optics, Huntsville, Alabama 35899; J. H. Gruninger is pensive digital processor. For reasons which will soon
with Aerodyne Research, Inc., 45 Manning Road, Billerica, Massa- become evident, we call the hybrid system involving
chusetta 01821; J. E. Ludman is with Rome Air Development Cen- such a processor a mathematical problem solver. Sec-
ter/ES, Hanscom AFB, Massachusetts 01731; E. Tsoni is with Uni- o a mate pro be soler.tec
versity of Crete. Department of Computer Science, lraklion, Crete, ond, the accurate processor could be a physical system

Greece; the other authors are with Princeton University, Princeton,
New Jersey 08544. morphic with the control theory. We call such a pro-

Received 6 May 1986. cessor a physical problem solver. With a mild effort,
0003-6935/86/183128-04$02.00/0. the reader should become convinced that these two
i 1986 Optical Society of America. problem solvers use the same mathematics.
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I#. Accuracy Analys I-l=Az. (5)

We will examine the bimodal optical computer and write Eq. (4) as
(BOC) with specific emphasis on linear algebra as

0 ight be used, for example, for numerical solution of A(Ax) = r. (6)

partial differential equations. The generic BOC We now have a problem of the same form as the origi-
method was originally proposed by Thompson6 some nal with A being the same matrix, except with the
time ago for iteratively improving the precision of me- inhomogeneity term b replaced by the residual vector
chanical devices which were used for the simultaneous r.
solution of linear equations. This method appears to ",'e now want to ise the analog optical computer
provide some considerable benefit for situations where again to estimate Ax and refine the solution x, but we
a low-accuracy but fast device is available for provid- first scale the equations by an appropriate number S to
ing approximate solutions to partial differential equa- bring the voltages and currents back to the levels in the
tions. This can then be linked to a higher accuracy first solution. Thus we solve
device which is particularly well suited for forward
substitution of the approximate solution into the origi- A Y = Sr (7)

nal equation. The BOC iterative scheme, besides hay- and then use the estimate
ing been proposed by Lord Kelvin,6 is a standard nu-
merical approach to the iterative solution of linear Al = y/S (8)
systems and has solution of linear systems and has to refine the current solution to
been analyzed with respect to numerical round-off
error by Wilkinson 7 and Stewart8 among others9. A • = X- + Ax. 19)
working model of this analog and digital bimodal elec- This process can be iterated and in favorable condi-

i trical computer has also been constructed by Kar- tions will converge quickly to solutions of accuracy
plus.'0  This work reexplores and extends the prior only by the digital computer representation of A, b,
work and incorporates modern linear and nonlinear and the digital computation of Eq. (3). The descrip-
optical computer techniques. tion above for the iterative procedure was given in

We can summarize this idea in the following way. terms of a linear equation; however, this concept may
Suppose we want to solve the n-dimensional linear also be applied to nonlinear systems and would take
system of equations, advantage of the unique capacity of nonlinear analog

Ax - b. ( circuits for the solution of the nonlinear algebraic
.*) equations of the discretized system. An analysis simi-

Here A is a given matrix, b is a given vector, and x is the lar to the above treatment will again apply since the

sought-after solution vector, equations become quasi-linear near the true solution.
These problems are of great interest in their own We might call this a floating-point analog computa-

right. In addition such systems with high dimensions tion where the scaling parameter S acts wi a radix,
arise when linear partial differential equations are varying from stage to stage with the size of the residu-
solved by the finite difference method. Many other als in the equations. We note that this technique is
problems can be recast in this form. Suppose further quite similar to the very standard iterative numerical
that we have built a discrete optical analog processor methods, such as Newton's method. In addition, we
for this problem which gives an approximate solution see that this technique marries analog and digital com-
that can be summarized with the equation puters in a most congenial way-we take advantage of

the speed and highly parallel nature of the analogIAi 6, (2) system as well as the memory and high precision of the
digital system in the external loop.

where A and b differ from A and b because of the We have examined the stability and convergence
I limited accuracy of the analog components. We now properties of the iteration process for this BOC. To

have an approximate solution to our problem x, which first order we can model the error caused by solving the
typically is accurate to a few percent. Next, we use a system on an analog computer (Eq. 2) by [Ref. 8, Corol-
digital electronic computer to form the residual lary (3.7)]

r = b - Ai (3) (A + E) - 1 - (I - F)A -' .  (10)

using the actual high-precision versions of A and b. where E is the error in the matrix due to the analog
Notice that this step entails only substitution of the representation. The norm of F is bounded by
current solution x in the modal equations, a relatively kF < h(A(WE:I/A1l) l}
fast operation for even a modest digital computer. I - [k(A)0E;!/I[AI"

Subtracting Eq. (3) from Eq. (1) with digital electron- ![ •is a matrix norm, and the condition number of A is
ics, we can write defined by

A(x - i) - r - 0 (4) 0IA) = A A-11. 112)

call the current solution error Substituting Eq. 10 into Eq. 6 gives
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k - - (I - F )A-'(b - Ax,). (13) optical elements can be readily made and integratedS Letting x*= A-b be the exact solution, we can rear- together into an overall nonlinear computer.
rang this to yield As a simple example of a nonlinear problem we mayrange tconsider the search for roots of a polynominal p(x) in

z - - -F(x, - Z*), (14) the real variable x. It is straightforward to use optical
methods to evaluate polynomials via Horner's rule.

and taking the norms of both sides, Optical polynomial evaluation can be analog"1 or digi-
IIzl,, - zIll<llFt • lix,, - xzII. (15) tal. Some tricks to accommodate dynamic range, al-

e tlow root searching by scanning, extend the range of
We thus have a sufficient condition for geometric problems addressed, etc. are given in the latter refer-

convergence of the process, namely, [I F l <1, which is ence. Root searching for real roots simply by scanning
satisfied if through x and watching for p(x) = 0 conditions is

SllII < (16) straightforward and fast. It is, however, not likely to
L hAl -J 2 be highly accurate. Suppose we identify an approxi-

where k(A) is the condition number of A, and JIEII is the mate real root Yo. We can then evaluate p(xo) and
error in the analog representation of the true matrix A. p =(X) - p(x) - p(xo)
Of course, when convergence takes place, the errors in
the digital computation may ultimately overtake the digitally. Assuming we are now close to the true root,
effect of the analog error that is modeled here, al- we can now change the scale of both p1 and x to gain
though the effects of analog noise may prevent that sensitivity. We might substitute y = 10x and q, =
kind of ultimate accuracy. 10pl and then search qj(y) as before. This leads to a

Since IIEII/IIAII may be -0.01 for optical analog pro- better approximation x, as can be verified by digital
cessors, Eq. (16) requires that k(A) < 50. This is quite evaluation of p(x1 ). Accuracy is limited by the condi-
restrictive but perhaps quite pessimistic. Simple tion number of the polynomial because that limits the
equilibration of rows may change A to A' with accuracy of the polynomial evaluation. Other similar

examples can be found, and a general set of logic can be
k(A)'<< k(A) set forth as discussed below.

Furthermore, a variety of other mathematical tricks A nonlinear computer of the type discussed in the
can be performed. We can replace Eq. (9) with first paragraph could likely be of limited accuracy but

capable of achieving an extremely rapid solution with-
z = x + O(x (17) out the introduction of artificial linearization or itera-

and seek to use the convergence factor 8 to force con- tion algorithms. The machine could be used alone or
vergence in analogy with stochastic approximation. incorporated into an overall hybrid device along the
We can replace Eq. (6) by lines discussed in Sec. III and the polynomial root

searching example. This would entail introducing a
A + pq7(Ax) -r (18) high-accuracy digital computer as a means of monitor-

where q is chosen orthogonal to Ax and p is a free ing residual errors. Updated corrections to the origi-
vector so that A and pqr are of the same dimensional- nal fully nonlinear solution could be achieved by again
ity as A. Calling using the nonlinear solution if it is close enough to the

true answer that the nonlinear computer effectively
A" - A + pqT (19) operates in the linear mode after the first cycle. As an

we seek p values to make alternative it would be possible to construct an addi-
tional linearized version of the machine for the accura-

k(A") << k(A). (20) cy updates on the solution. These approaches may be
theoretically modeled as well as demonstrated in the

IV. Nodhow Prbem laboratory, and we plan to carry out such studies in the
Perhaps the most important payoff with BOCs may future.

be associated with the solution of nonlinear problems.
Many physical phenomena result in nonlinear differ-
ential or ultimately algebraic equations for solution. V. Conclorm
Such problems are notoriously difficult to treat by Analog optics, when adequate for a task, is usually
conventional numerical methods on digital computers. superior in speed, size, power consumption, and cost to
This comment follows since the algorithms will involve all competitors. What we have suggested here is alinearization or perhaps iteration with convergence means to extend the set of situations for which analog
being slow or perhaps nonexistent in highly nonlinear optics is adequate. Many studies remain to be per-
problems. A more suitable approach would be based formed on both algorithms and hardware. Neverthe-
on directly building the nonlinear behavior into the less, the general concept of a hybrid system appears to
calculation process. It appears possible to construct be extremely promising.
hybrid machines based on this logic following lines
parallel to that discussed in Sec. III. The key to this Work sponsored primarily by the U.S. Army Re-
approach rests on the fact that nonlinear electronic or search Office under contract DAAG-29-84-C-0026.
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Some of H. J. Caulfield's work was sponsored under surface suddenly changes. This causes a sudden deflection of the reflected
Soe ofrH. e coa ct light beam, and consequently a displacement of the beam soot on the detector.SDI/IST prime contract N00014- -K-0479.rocessing circuitry determines the amplitude and rate of beam dis-

placement to detect penetration and to generate control signals for the robot
to regulate welding parameters.
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Optical monitoring of weld penetration
A system is being developed to monitor weld penetration optically and

produce a signal for controlling an arc welder. The system is aimed at
automatic welders, robot welders in particular. Made from small, low-cost 0
components and utilizing optical fibers to conduct the signals, the system is
immune to the electromagnetic interference that is common in industrial a
environments.

The monitor directs collimated Ii ht from a small diode laser at the molten C
I f metal bene- the arc (see Fig. 16). A filter intercepts the reflected <r

ear to suppress raneous light, including light from the welding arc. A
position-sensitive detector at a distance from the pool intercepts the beam5
reflected by the pool.

If the weld penetrates the w..kpiece completely, the curvature of the pool
Ses-Po, t'on Wedng o... .

Sensor Rod

Isieimhetrgo 

pro 
g O 

'
OW4 ases

wummi ""-Wass"

Fig. 17. Accelerated electrons strilte a beam Of 02 gas in the disso-
ciative-attachment region, producing 0- ions. The 0- ions are

Fig. 16. Bounding off the meniscus of a pool of molten metal, a laser accelerated to the desired final energy and pass through the photo-
beam impinges on a position-sensitive photodetector. The beam detachment region to form O(OP) atoms. These pass between elec-
diameter can be adjusted for the width of the weld. Optical filters tric field plates to remove 0- and e and then strike the target

screen out the light from the arc. c -m C Pee
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Speed and convergence of bimodal optical computers

Mustafa A. G. Abushagur, MEMBER SPIE Abstract. A bimodal optical computer (BOC) for solving a system of linear
University of Alabama in Huntsville equations is presented. The BOC can achieve accuracies comparable to those of
Electrical and Computer Engineering the digital computer, and its speed is far superior in solving a system of linear

Department and equations. The advantage in speed increases with the size of the matrix. The
Center for Applied Optics problem of the convergence of the solution using the BOC is investigated. It is
Huntsville, Alabama 35899 found that by using a BOC with an error as hig as 50% in the matrix's optical

mask and 1% in the electro-optical devices, convergence is achieved for
H. John Caulfield. FELLOW SPIE matrices with condition numbers of 25. The effect of the condition number on
Center for Applied Optics the convergence of the solution is investigated. It is found that matrices with
University of Alabama in Huntsville large condition numbers converge very slowly. Convergence for matrices with
Huntsville, Alabama 35899 condition numbers higher than 250 was achieved. A means of improving the

condition number of a matrix is also introduced.

Subject terms" optical computing and nonlinear optical signal processing numerical
processors; matrix processors; optical hybrid processors; convergence; algebra

Ootical Engineering 26(7), 022-027 (January 1987).

I

CONTENTS using Lord Kelvin's iterative method.2 In Sec. 3 we present a
I. Introduction numerical analysis for the convergence of the solution of a
2. Bimodal optical computer algorithm system of linear equations. In Sec. 4 we present computer
3. Convergence of the solution simulations of the BOC to study the dependence of the solu-
4. Computer simulations tion convergence on the condition number of the matrix and

4.1. Condition number effects on the errors in representing the 1, 0 data in the optical
4.2. Efetof the mask's error system. In Sec. 5 we compare the time required to solve a
4.3. Rate of convergence system of linear equations using the BOC to that required by

5. Computational speed analysis the digital computer. In Sec. 6 a means of reducing the condi-
6. Condition number reduction tion number of a matrix is examined, and in Sec. 7 conciu-
7. Conclusions
8. Acknowledgments sions and final remarks are drawn.
9. References

2. BIMODAL OPTICAL COMPUTER ALGORITHM
1. INTRODUCTION The bimodal optical computer works in the following manner
Analog optics is very attractive for signal processing and for solving a system of linear equations:

computing because of its ability to process two-dimensional Ax = b
data in parallel very rapidly. Unfortunately, this high speed
parallel processing achieves only low accuracy because of the where A is an n X n matrix and x and b are n X I vectors. A and
nature of the analog processing, especially in optical systems, b are given. The x is unknown and is computed as follows:
where accuracy problems arise from errors in writing and
reading the signals using the 1/ 0 electro-optical devices. In (a) Use the optical analog processor to compute an approx-
contrast, digital electronics is much slower but much more imate solution x0 of the linear system. The subscript zeros
accurate. A compromise(hybrid) system. the bimodal optical indicate inaccuracies in the optics and electronics, so the
computer, appears to be intermediate in both speed and accu- system of equations solved by the optical analog processor is
racy. This method, introduced by Caulfield et al.' and de-
scribed in Sec. 2, combines the high speed and parallelism of A 0 b 0 . t so (2)
analog optics with the high accuracy of digital electronics
__bSoehston__t_ hg ccrcywthtedigital

computer. Use a dedicated digital processor to calculate the
Invited Paper ON-107 received June 10. 1986; revised manuscript received residue
Sept. 17. 1986 accepted for publication Sept. 17, 1986: received by Managing
Editor Oct. 13. 1986.01987 Society of Photo-Optical instrumentation Engineers. r = b - Ax. = A(% - x.) = AA1x (3)
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SPEED AND CONVERGENCE OF BIMODAL OPTICAL COMPUTERS
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Fig. 1. System layout of the bimodal optical computer. Fig. 2. Spectral radius S(M) asa function of the standard deviation
of the error matrix.

(c) Use the optical analog processor to solve the new linear I ,max
system for Ax: X(A) = II All 2 II A- 12 (8)
A0y = sr0 , (4)y =(4 where LXI ma and LXImrn are the maximum and minimum

where y = s Ax and s is a "radix," or scale factor, chosen to eigenvalues of the matrix A. The equality is satisfied if A is a
make good use of the dynamic range of the system. symmetric positive definite matrix. The condition number is a

(d) Use the digital processor to refine the solution z0 for x,: measure of the accuracy of the Ax = b solutions. The larger
the condition number, the less accurate the result achieved

x, + Ax (5) with any fixed-accuracy computer.
From Eq. (2) the solution x0 is given by

If the refined solution x, is accurate enough, terminate the

iterations. Otherwise, return to (b), (c). and (d) for a more xe = BNb • (9)
refined solution.

where B, = (A,)-' . and if x, is the solution after the ith itera-

3. CONVERGENCE OF THE SOLUTION tion. then

Figure I is a block diagram of the BOC. The solution of the x,, = + -x . (10)
linear algebraic equation will be computed optically using the
method introduced by Cheng and Caulfield.3 The heart of the where Ax is given by
processor is the fully parallel Stanford matrix-vector multi-
plier.' Input lights representing x components are spread Ax = B0r . (11)
vertically onto the columns of an attenuating mask represent-
ing A. Row sums of the transmitted light are detected to give Therefore,
components of the output vector z. For all k, we allow

.5k= bi -Zk 
(6)

where I is the identity matrix. The condition for the conver-
todrive xk. Here, zi, isa component of thecalculated z = Ax. gence of the solution given in Eq. (12) is that5

The convergence of the solution of the problem depends on
two factors: the convergence of the solution of the system S(M) _ I . (13)
given in Eq. (2) by the analog processor and the convergence
of the solution for the system given by Eq. (1) by the optical- where M = I - BA and S(M) is the spectral radius of the
hybrid processor (BOC). The convergence of the solution of matrix M, which is equal to the absolute value of the maxi-
Eq. (2) is discussed by Cheng and Caulfield. They report that mum eigenvalue kma,(M) of the matrix M. Representing the
if the matrix is a positive definite (a matrix with positive matrix A with an optical mask (a photographic film or an
eigenvalues), then the solution will converge regardless of the SLM) is the major source of the error. We need to examine
size of the matrix. This simply applies to step (a) of the how accurate this mask should be to achieve solution conver-
procedure outlined in Sec. 2. gence. Let us represent the mask's matrix by

We turn next to the total process, presenting a numerical
analysis for the convergence of the solution and its depen- A =  (14)
dence on the condition number of the matrix. The condition where E is an error matrix. For simulations, E is generated by
number of the matrix A is defined asa Gaussian random number generator with a standard devia-
X(A) = 11 All • 1! A-' (7) tion oE. In Fig 2 the spectral radius S(M) of the matrix M is

plotted versus the standard deviation oE of the error matrix
where the double bars denote the norm of the matrix. If we for a matrix A with a maximum coefficient of unity (any3 consider the Euclidean norm. then matrix can be normalized to take this form). It is clear that the
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spectral radius increases as aE increases, which slows the rate Ca

of convergence. The interesting result is that for this particular I
i matrix, convergence is achieved even with an error matrix of A" ,

>50%.R 4. COMPUTER SIMULATIONS +
In this section we present a computer simulation, using the too-

BOC, of the procedure outlined in Sec. 2. In the simulation we 2
consider matrix masks with different accuracies. We also ,AI
consider the accuracy of the LEDs and photodiodes to be 1%
in writing and reading the data. Here, we are interested in -
finding the number of iterations required for the solution to 0.

converge to a preset accuracy.

4.1. Condition number effects
The condition number is a measure of the sensitivity of the
solution of Eq. (I) to any variations. In the first part of the
simulation. we tested the condition number and its sensitivity +

to the error matrix of the optical mask. In Fig. 3 the condition 200 t .
number of the mask's matrix is plotted as a function of the
standard deviation of the error matrix, oE. The maximum
coefficient of the matrix A is kept equal to unity. In Fig. 3(a)
we consider a matrix with a condition number equal to 60.
This curve shows that with the increase of the error in repre- 0 .2

senting the matrix by an optical mask, the condition number
improves, except for a very few points where the error valuescasdthe condition number to increase, in Fig. 3(b) a marx Fig. 3. Condition number x(A + E) of the mask's matrix as a function
caused matrix of the standard deviation of the error matrix for (a) x(A) 60 and
with )(A) = 300 is considered. Here, for the entire range of (b) x (A) = 300.
oE, the condition number of the mask's matrix is much smaller
than 300. This interesting result shows that if we start with an
ill-conditioned matrix, its mask can be well-conditioned. This 20:

will help in solving problems in which the matrix is
ill-conditioned. ,

In testing the effects of the condition number on the con-
vergence of the solution of the system of linear equations, we 1

3 -

used the BOC to solve the system with a 16 bit resolution. The ,
matrices were generated randomly using Gaussian statistics.
An error of 1% of the maximum coefficient of the matrix was -' '

added to generate the mask. An error of 1% also was used in -
reading x0 and in writing bb. In each case we computed the
condition number of the generated mask's matrix. The ,.
number of iterations required for convergence of the solution
was determined for each case. The iterations were terminated ° 0 so o 2( ,,o 200 2,0

if they exceeded 25 and also ifIrkI/Irk - I > I, which is the XAl

condition of a solution divergence. The number of iterations Fig.4. Numberof iterationsaa function ofthecondition number of
required for convergence of the solution with 16 bit accuracy a randomly generated matrix A.

is plotted as a function of the condition number of the mask's
matrix in Fig. 4. In these calculated data points it is quite
evident that the number of iterations increases with the
increase of the condition number, which is a predicted result.6  this will affect the speed of convergence of the solution. In this
The increase of the condition number decreases the accuracy simulation we started with a matrix with a condition number
of the solution, so more iterations are needed to achieve the s(A) = 24. Error matrices E were generated using Gaussian
desired accuracy. From Fig. 4 convergence was achieved for statistics with coefficients ranging between i and 55% of the
condition numbers as high as 230, and even with X(A) > 1000 maximum coefficient of the matrix A. The optical masks wereU in our experiments, convergence was achieved for some cases. generated by adding A to E. These masks were then used in the

BOC to solve the system of linear equations. The number of
iterations required to achieve the solution with the desired

4.2. Effect of themsk's error accuracy (16 bit resolution) was computed. In Fig. 5 the
The major limiting factor on the speed of convergence is the number of iterations is plotted as a function of the standard
accuracy with which we can represent the matrix with an deviation of the error matrix. a E. The number of iterations

attenuating optical mask. In the present state of the art. increases with the increase of the error in the mask. asU accuracies of 3 to 5% are achievable. We would like to see how expected. 6 However, even with errors as high as 55% in
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of the standard deviation of the error matrix. Fig. 8. Natural logarithm of residue as a function of the number of
iterations for x(A) = 13. 26. 42, and 65.

representing the matrix A with an optical mask, convergence number of iterations required for a solution with an error e is
is still retained. Of course, a larger number of iterations is given by5

required. This result is very important. It means that even with
optics that are not so accurate, we can realize this optical N log(e) I1)
computer that solves this class of linear algebra problems with N1  - RF (5
a high accuracy and speed.

Other observations recorded in this simulation need to be where R( M) is the asymptotic rate of convergence,

highlighted. First. the condition number of the mask's matrix R(M) log[S(M)1
A + Eiscomputed for the set of error matrices E. In Fig. thee (6)
condition number of the mask's matrix, X(A + E). is plotted In Fig. 7 the number of iterations required to get a solution
as a function of the error oE. The condition number of the with a 16 bit accuracy (e = ) is plotted versus the spectral
maskdecreaseswiththeincreaseoftheerroralmostexponen- radius S(M). Equation (15) is plotted as a continuous line.

tially, which is surprising since it appears to contradict the while the data computed in the simulation are plotted as

result shown in Fig. 4. We showed there that for large condi- squares. The theoretical and experimental data agree well. As

tion numbers we need more iterations, while here more itera- S(M) increases, the number of iterations increases, and as

tions are needed for small X(A0 ). But. indeed, it is not a S(M) approaches unity. the convergence becomes very slow.

contradiction. Here, although these matrices have low condi- For values of St M) larger than unity the solution will diverge.

tion numbers, they are very different from the matrix A given

by the system of linear equations because of the large error 4.3. Rate of convergence
involved, which makes the convergence very slow.

Second, we found in the results of the simulation that if the So far we have considered solutions with a 16 bit accuracy. We
condition number of the mask increases for a large error, the are interested in determining how many more iterations are
solution will diverge, because the solution obtained in each needed to get a higher accuracy of the solution. In Fig. 8 the
iteration has high inaccuracies. This. in return, makes the natural logarithm of the maximum component of the residue
convergence either very slow or not achievable. I r l is plotted as a function of the number of iterations for a set

Finally, we note the relationship between the spectral of matrices with different condition numbers. x(A) = 13.26.

radius S(M) of the matrix M given by Eq. (13) and the number 42. and 65. The smaller the condition number. the higher the
of iterations. Wecomputed S(M) foreach mask of Fig. 5. The accuracy achieved in fewer iterations. For the condition
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number 13, one iteration can increase the accuracy by as many
as 5 bits. 2.0-

220

5. COMPUTATIONAL SPEED ANALYSIS < °°,'o 80 10
To get some quantitative values for the speed of this process C .,0
compared to that of the digital computer, we calculate the ' -,
number of operations required by each method, then multiply 1 20 °=20
the result by the time required for each operation. We con- 16 '°0
sider the total number of operations regardless of whether °0/
they are multiplications or additions. .0

Let us consider an nXn matrix A. The time required for 20

one iteration of the procedure outlined in Sec. 2, T01, is given by 20._ 0 S 02060 40 B o 'i 0 4

T01 = TI + 2n(n + I)TD . (17) Size of matrix, n
Fig. 9. Operation advantage in Eq. (25) as a function of the size of

where TAI is the time required to solve Aox 0 = bb by analog the matrix forK = 1. 10, and 20.
optics and TDI is the time required for one digital operation.

I Therefore, the time required to do Lo iterations with the BOC is.,
= I~TA + 2nn + lT 0 1] (18) Here, A1 is an inherent advantage. A single analog opera-

To = 10[TAI + 2n(n + I)T] D1 (18) tion is much faster than a digital one. The entire Ax = b
solution will be slower than a single digital operation, but the

while the time required by the digital computer to solve the analog Ax = b solver works at speeds independent of n. On
system of linear equations using Cholesky's method' in ID the other hand, TDI is operation dependent. It includes the
iterations is time required for performing the operation and storing and

retrieving the data from computer memory, which is time

T + 2n') lT, (19) consuming, especially as n increases.

The factor A. is a problem-relaed advantage. It is a func-
tion of the size of the matrix, n. and the ratio of the iterations.

The condition we need to satisfy in order to have an advantage K. The operation advantage AP is plotted in Fig. 9 as a function

using of n and K. It is clear that A. increases rapidly as n increases.

T, «< T, (20) even if the number of iterations in the BOC is much larger
than in the digital processor, while in reality the number of

Triterations of the two processes will be approximately the sameTherefore, for a clear advantage of the BOC, from Eqs. (18) to for well-conditioned matrices.

(20) we want

loTI+ nn+ )Ij <2 + 2n') I DTDI 21 6. CONDITION NUMBER REDUCTION
3 (21) As mentioned earlier.thecondition number isan indication of

how accurate the solution of the system of linear equations
or will be. The larger the condition number )((A). the more

iterations are needed for solution convergence. One way of
,4TAI + 2n(n + l)T0 ] << + 2n TDI ( (22) reducing the condition number ofa given matrix is to normal-

ize the matrix in the following manner:

where K = I/1 . Then, Eq. (22) can be rewritten in the form a,
a. 1 .I.2...n 7

(n",3) + 2n2(l - x) - 2n, TO1  a1  (a , + .. a )'  =  .n . (27)
PC TA I where the a are the coefficients of the matrix A and a:, are the

coefficients of the normalized matrix A. The ratio of the
The advantage in speed in using the BOC over the digital condition number of the normalized matrix Ar, X(A,). to that
computer is obvious from Eq. (23) and it increases as the size of the original matrix, X (A). is plotted in Fig. 10. It is clear that

ofthe matrix n increases. Toexamine this condition carefully. the normalized matrix has a smaller condition number than
let us rewrite Eq. (23) in the form the original matrix by a factor of approximately 0.8. We

APA1  > 1, (24) expect this to decrease the number of iterations substantially.

7. CONCLUSIONS
where The speed, accuracy. and convergence of the bimodal optical

2[(nl 6) + n 2(1 - K) -119]computer are discussed. The BOC is similar to the digital

* I AV = (25) computer in its accuracy but is faster in solving a system of
K linear equations than the digital computer. The speed advan-

tage increases with the increase of the size of the matrix, which
= '(26) makes it a more attractive computer. The convergence of the

TAI solution asa function of thecondition number and theerror in
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I
Superconvergence of hybrid optoelectronic A(Axn) - ro. (3)

processors (5) Evaluate digitally

Mustafa A. G. Abushagur, H. John Caulfield, Peter M. x, = x0 + 1xo 4)
Gbson, and Mohammad Habli

All authors are with University of Alabama in Huntsville, r, - b - Ax, 15)

Huntsville, Alabama 35899; H. J. Caulfield is in the Center (6) If 11 r III is small enough, stop. Otherwise, go to (3) and
for Applied Optics, P. M. Gibson is in the Mathematics & recycle.

Statistics Department, and the other authors are in the In the optical steps, replace A with a new matrix A., derived
Electrical & Computer Engineering Department. from A by adding noise to it.
Received 26 August 1987.
Sponsored by Jacques E. Ludman, Rome Air Develop- A0 = A + E. t6)

ment Center.
0003-6935/87/234906-02$02.00/0. where E is an error matrix generated using Gaussian statis-

1987 Optical Society of America. tics with a standard deviation 6E. The new matrix will have
a much better condition number, especially for an ill-condi-

Beginning with Lord Kelvin' and continuing through re- tioned starting matrix A. The digital correction steps keep
cent work of ours, -5 researchers have been interested in ways the solution headed toward Ax - b not Aox = b. In analog
to use a fast low-accuracy processor and a slow high-accuracy processors adding E is automatic because of system noise.
processor together with intermediate but high speed. We We treat 6E hereafter as the standard deviation of system
showed earlier2 that to guarantee convergence with a fast noise.
processor of accuracy E (expressed as rms relative error) on an The method proved capable of solving systems of linear
Ax = b problem in which the condition number is x(A), the equations with a wide range of condition numbers. The
requirement (in approximate form) is convergence to the solution is very rapid for small condition

X (A).E < () numbers and very large condition numbers (near singular
and singular) but not as rapid in intermediate values of

For analog optical algebra processors, e - /5o (2%) is excel- condition numbers. And it works best for singular, underde-
lent. This means we may expect some failures of the process termined, or overdetermined systems.
for x(A) > 25. Since many matrices have much higher In Table I the number of iterations N, required for a

condition numbers, this is a severe restriction. In subse- convergence to a solution with 16-bit accuracy is tabulated as
quent publications'- we showed that convergence was a function of the error involved in the calculations. These
achievable for many matrices with X(A) >> 1/(2e) and that A results are obtained using a computer simulation of the
can be preconditioned (rearranged without changing its bimodal optical computer. The errors considered in the

meaning) to improve X(A). These steps brought the result- calculation are defined as follows:
ing bimodal optical computer (BOC) to the point where it -f the standard deviation of the error matrix E;
was practical for some real but restricted situations. a a the standard deviation of the error in writing the vector

Our goals in this Communication are twofold. First, we b, and
wish to remove some restrictions on the condition number a, -the standard deviation in reading x.
and thus achieve convergence for a wide range of problems. The results in Table I are for a singular matrix A. The
Second, we wish to remove the restriction we imposed on the matrices considered here are 10 X 10 and have rank of 9 and
Ax - b solver by limiting its convergence to only positive 1, respectively. When an error is added to the vector b the
definite matrix A and thus guarantee convergence for other solution diverges, but by adding an error matrix E to A the
matrices by modifying the algorithm, solution converges very rapidly, as shown in the table. This

Although the BOC can be applied to all linear algebra is true for different values of the error ab. The technique
problems we pick the general Ax - b problem for illustration, does work even with a processor with errors larger than that
We review here the basic ideas: shown in Table 1. Also we have considered a set of Hilbert

(1) Solve Ax b b optically to get xoc. matrices,6 which are very ill-conditioned, and their condition
(2) With specialized digital processor, evaluate to high number increases very rapidly by the increase of size. These

accuracy are used as test matrices for our new technique which was

ro - b - Ax.). (2) able to achieve convergence very rapidly, especially when
there are errors in the vector b.

(3) Normalize ro to keep solutions in range. Thus this technique makes the solution converge for a
(4) Solve optically system of equations which cannot be solved with ordinary

4906 APPLIED OPTICS I Vol. 26, No. 23 / 1 December 1987



I

1 TabMe I. C o ergce m4 avioe 0 10 X 10 Matrices of mnws I OW I for be solved in this manor. Replacing A by AHA increases the
Varios Additive ,s condition number (squaring at the most) but does not pre-

0 x 10 10 x 10 vent convergence to an accurate solution of Eq. (7). Equa-
Rank - 9 Rank - I tion (7) is, of course, not well posed as Ax - b. Therefore, we

UE db e, N, I1r.211/ill N, 1 r211/11rill must use the residual of Eq. (2) not the residual of Eq. (7).
With this method most problems behave as simple prob-

0 1.E-6 0 4 0.5585 D 5.1E + 26 lems: they converge and converge rapidly. This has been

.E-6 I.E-6 0 1 3.486 1 5.1E + 8 applied successfully to Ax - b problems, which are deter-
0 1.E-6 I.E-6 D 2.3273 D 6.7E + 26 mined, underdetermined (linear programming), or overde-

I.E-6 1.E-6 I.E-6 1 9.24-6 1 I.2E - 5 termined.
0 0.01 0 D 1.000 D 2.4E + 64 The method is purely algebraic and is, therefore, simply an

I.E-6 0.01 0 4 2.2E-2 2 2.9E - 3 improved approach to some numerical algebra problems.
0 0.01 0.01 D 1.1953 D 1.2E + 31 The fact that it is suited for BOC use is an independent fact.

I.E-6 0.01 0.01 9 2.1E-1 5 6.9E - 2 If we can achieve fast convergence almost independently
I.E-4 0.01 0.01 7 1.7E-1 4 3.6E - 3 of condition number, the first practical application mnay be to
0.05 0.01 0.01 8 2.5E-I 5 .3E - 1 phased array antennas where the phasing problems are lin-

0.10 0.01 0.01 18 7.2E-1 4 8.6E - 2 ear algebra and the primary difficulty is the presence of

N ,0 is t h e n u r o 1 i s r e d t o a i ev e 2 j a m m e rs : m a lic io u s m e a n s t o in c r e a s e t h e c o n d it io n n u m -N1 is the number of iterations required to achieve 11rNvill " 0 to ber.

within 16 bits. The ratio of 11r.11/Ill gives another measure of
convergence (or divergence indicated by D) rate. We have used the This research was supported by the Innovative Science
infinity norm for convenience. and Technology Office of the Strategic Defense Initiative

Organization, administered through the Office of Naval Re-

search under contract N00014-86-K-0591.
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Let Ax - b be a consistent linear system with 4 an n x n complex matrix. Suppose that G is a nonsingular
n x n complex matrix for which A 4- G is nonsingular and zero is not a multiple root of the minimum
polynomial of G 'A. It is shown that there exists a positive real number p such that whenever -; is a
complex number with 0 < I-'i < p the sequence x., x,. x ... converges to a solution of Ax = b for every
initial vector x0, where IA + ;'G)x, = 7Gx,.., + b for 1.2.. Related questions are also considered.I
In this note theoretical results are presented that help explain the observed behavior
of a standard iterative process for solving a linear system of equations.

Analog optics is very attractive for performing matrix computations because of its
ability to process two-dimensional data in parallel very rapidly [5]. Unfortunately,
this high speed processing achieves only low accuracy. In contrast, digital electronic
processors are slower but much more accurate. It was recently suggested [4] that
linear systems can be solved iteratively by a method that combines the speed of
analog optics with the accuracy of digital electronics. The proposed method is based
on the usual iterative refinement of approximate solutions of linear systems (for
example, see [6]). To solve a system Ax = b, where A is an n x n matrix, use an
optical analog processor to find an approximate solution .t of Ax = b.

I. Use a digital electronic processor to compute r = b - A.t.
2. Use the optical processor to find an approximate solution & to the system Ae = r.
3. Use the digital processor to refine the approximate solution of Ax = b to

Ji = 1 + i. If i is accurate enough, terminate the iterations; otherwise, set i = x
and return to step 1.

Due to inaccuracies in writing and reading the signals using electro-optical devices.
the optical processor solution 1 of Ax = b is the exact solution of a perturbed system
(A + E)x = b, where we assume that the matrix A + E is nonsingular. In the current
state of the art in optical processing, the magnitudes of the entries of the error matrix
E may be from three to five percent of the maximum magnitude of the entries of A.

*This work was supported by the Innovative Science and Technology Office of the Strategic
Defene Initiative Organizaton. administered through the Office of Naval Research under contract
N00014r6-K-0591.
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In numerical experimentation on a digital electronic computer, the error matrices
were randomly generated [1], [2]. In extensive experiments, it was found that A + E
would be nonsingular and that the approximate solutions converged to a solution
of Ax = b. Application of the method can be viewed as a preconditioning of the
system. It was applied to systems for which A was nonsingular with condition number
varying from small to quite large [i1, [4]. Later consistent systems with singular
coefficient matrices were solved, and it was found that convergence to a solution of
Ax = b was in practice even better than for A nonsingular [2].

When the method is applied, a sequence x0 , xt, x,. .... of approximate solutions3 to the consistent system Ax = b are generated where

(A + E)x, = Ex,._- + b, i = 1. 2 ...

It is well known (e.g. see [3]) that for nonsingular A + E iteration converges to a

solution of Ax = b for every initial vector x0 if and only if lim ((A + E) tE)' exists.

If this limit exists, for n x n complex matrices A and E. then we say that E is an
acceptable error matrix for A. Let H. = (hij) be the n x n matrix with hi.j , = I for
i = 1, 2-.. , n- 1 and all other entries zero.

THEOREM I Let A and G be n x n complex matrices with G and A + G nonsingular.

(a) If zero is not a multiple root of the minimum polynomial of G -'A, then there
exists a positive real number p such that, for all complex numbers ", with
0 < 1A1 < p, E = -G is an acceptable error matrix for A.

(b) If there exists a nonzero complex number 7 such that E = 7G is an acceptable
error matrix for A, then zero is not a multiple root of the minimum polynomial
of G-'A.

Proof Let A have rank r, and suppose that zero is not a multiple root of the
minimum polynomial of G- A. Then there exist a nonsingular n x n matrix P and
a nonsingular r x r matrix Q such that

P 
-Let

e p = (min{flj: . is an eigenvalue of Q})/2.

Then p >0. Let y/ be a complex number with 0 < ,t < p. It follows that -,.G is
nonsingular and

SP-'((G)-'A+I)P=E I+7-Q]•

i Let . be an eigenvalue of I + y- 'Q. Then . = I + ,il for some eigenvalue p of Q.
Thus JI > p/y - I > 2 - I = 1. Therefore. I + "-'Q is nonsingular and Ifj < I for
each eigenvalue ; of (I + 7 'Q)-'. It then follows that (IG)- 'A + I is nonsingular and
that lim (((yG)- 'A + I)- I), exists. Moreover, since (-,G)-' A + I = (y'G)- '(A + -iG),U -

I



I
!

CONSISTENT LINEAR SYSTEMS 217

5 we see that A + "/G is also nonsingular with

(A + ;-G)- -'-G = ((;G) '(A + ;G)) = ((;G)- -4 + I )

Thus E = yG is an acceptable error matrix for A. Therefore part (a) holds.
Now suppose that there exists a nonzero complex number ,- such that E -;G is

an acceptable error matrix for A, and that zero is a root of the minimum polynomial
of G 'A of multiplicity k, where k > I. From the Jordan canonical form of G- 1.4,
we see that there exists a nonsingular matrix P such that

P - G -'.4P = [, ]
where Q is some (n - k) x (n - k) matrix. It follows that

3 P'-(A + G)--,GP = [( + - 'H,')  I

Since k> 1, we see that lim W(+;' -UkY)-t)" does not exist, and thus

lim ((A + 7G I-'t'G)" does not exist. This contradiction establishes part (b).

If A is given and E is randomly generated, one would expect E and A + E to be
nonsingular, and that zero would not be a multiple root of the minimum polynomial
of E-'A. Therefore, if the entries of E are chosen with magnitudes fairly small in
comparison with the maximum magnitude of the entries of A, Theorem I indicates
that E will probably be an acceptable error matrix for A.

Part (a) of Theorem I clearly implies the following.

COROLLARY 2 Let A and G be nonsingular n x n complex matrices for which .4 + G
is nonsingular. Then there exists a positive real number p such that, for all complex
numbers -, with 0 < 1'j < p. E = -'G is an acceptable error matrix for .4.

For nonzero singular matrices A we have the following.

THEOREM 3 Let .4 be an n x n complex matrix of rank r where 0 < r < n. Then thereexists a nonsingular n x n complex matrix G such that A + G is nonsingular and ]or
each nonzero complex number -1, ,G is not an acceptable error matrix for .4.

Proof Let d= n - r, let n, n2 .nd be positive integers with n, + n, -+ n = n-
and define a block-diagonal matrix J by letting

J = diag(H .,,/, ..... H. .

Since A and J have the same rank, there exist nonsingular matrices P and Q suchthat QAP- J, Let G = (PQ) -', and let -/ be nonzero complex number. It follows
that A + 7G is nonsingular with

(A +yG)-'-,G = ((yG)-'(A + 7G))-' = P(I + J) P-.

Since n, > I for some i = 1, 2. d, we see that lim ((I -yH.,)- '), does not exist,

and thus E = ;G is not an acceptable error matrix for A.

I
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IThe acceptable error matrices that we have presented for a given matrix A would
appear to have entries with small magnitudes in comparison with the maximum
magnitude of the entries of A. However. the next two theorems show that each n x n
complex matrix A has acceptable error matrices with entries of arbitrarily large
magnitude. For nonsingular .4. it is easy to prove the following.

THEOREM 4 Let A be a nonsingular complex matrix. If , is any complex number with3positive real part, then E =A is an acceptable error matrix for A.

Now let K, = (k,) be the n x n matrix with k., = I and all other entries zero. For
nonzero scalars ;. we see that the matrix H, + ;,K, is nonsingular with inverse equal
to the transpose of H, + - - I K.. We shall use this in proving the following.

THEOREM 5 Let A be a singular n x n complex matrix of rank r. and let d = n - r.
Then there exist d linearly independent n x n complex matrices E,. E2 ..... E4 such
that for all nonzero complex numbers 7t, 7, .... .7d, E = ",-E, + 72 E, + - + ;'dE is
an acceptable error matrix for A.

Proof There exist positive integers t,. n2 . nd with n, + n2 + + nd < n andInonsingular matrices P and Q such that

P- 'AP = diag[H,,. H, 2 .... H,,, Q].

3 For i = 1, 2 d, let

Ej = P diag[6i, K,,. t K, 2 .... 6,K, 0]P- 1,

where 6ci is the Kronecker delta. Clearly, E,, E2 .. E, are linearly independent.
Let 71, 72. ..... ;d be nonzero complex numbers, and let E -- 'zE - z +• + "d E.
Fori= 1,2 .. d,we have

(H., + 7K,)- ,, (H. , ,,K,= .

Therefore. lim ((H, +,,K.,)- ',K,)'" exists for i = 1.2.. d. and it follows that

A + E is nonsingular and that lim ((A + E)- 'E)' exists. Thus E is an acceptable

error matrix for A.
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3 HYBRID OPTOELECTRONIC

NONLINEAR ALGEBRA PROCESSOR

Mustafa A. G. Abushagur
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Huntsville, Alabama 35899

ABSTRACT

A novel system for solving systems of nonlinear equations is proposed. Two i nt
algorithms are introduced. A speed analysis of the two different algorithms is presented and
compared with the speed of their digital computer counter parts. A great advantage in zp~ed :sU shown for large size problems.

1. INTRODUC;TION

Systems of nonlinear equations arise in the process of solving many physical problems. They
are a very important class of mathematical problems. Iterative methods are used tc soi.e -':c
problems.

In this paper we propose a new method for solving this class of nonlinear problems :
optical processors. In Section 2 the iterative methods used in solving nonlinear ssfems ,t
equation is reviewed. In Section .3 the optical implementation is proposed using .wo
algorithms. The speed analysis of the two algorithms is given in Section 4. In ec' i -i 5
conclusions and final remarks are drawn.

2. NEWTON's METHOD

Systems of linear equations are given as follows

4

where A is an n x n matrix, x and b are n x I vectors. In these systems A and b are given and x
the solution of the system is unknown.

Nonlinear systems of equations can be represented by
m " (1) = 0 2

I or

1(' * , Q =0,
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where fi's are nonlinear functions of X
One of the methods used in solving for x in the nonlinear system of equations is Newton'3

method. For a single nonlinear equation, an initial solution, x0 , of the equation is assumed. aad
the (k+1)th iteration of the solution is given by( 1)

Xk+1 = Xk (fk) fk

I where

fk= f(xk) , n f' xk4

g For a system of nonlinear equations, Eq. (3) can be rewritten as

I k 1l= k-(k)- ?k, '5

I 
where

af(i()

and J is the Jacobian matrix.

Let

(k-1 'k = k
then

Jk k k 
"k

I Eq. (8) is a system of linear equations to be solved for tk, which is the correction needed for *he
(k+l)th solution iteration. The algorithm for solving the system of nonlinear equations will be as

floi) Assume a solution

ii) Compute the nxl vector Ik and the nxn matrix Jk5 iii) Solve the linear system of equations Jkk --- k for k

iv) Compute the refined solution 1k1 = ik -

v) Check if the norm IIIk.i- IkIlI < e stop, otherwise go back to step (ii). f is the
allowable error.

3. OPTICAL IMPLEMENTATION

The iterative algorithm introduced in Section 2 requires 0(n 3) number of operations .'hen
used with conventional digital computer. The most expensive part of the algorithm is step ,Iu

3 370 / SPIE Vol. 936 Advences in Opricel Informotion Processing Nl (1988)
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I to solve a system of linear

equations. In previous ak
publications( 2-4) we have
proposed and analyzed a hybrid LED P001

optoelectronic processor, the ARRAY ARRAY

Bimodal Optical Computer
i BOC, capable of solving linear

systems of equations accurately "1
and rapidly. In this section we
modify that system to be used
to solve systems of nonlinear
equations as shown in Fig. 1.
We propose two different
algorithms, the first utilizes the
use of the analog processor to lk
solve the system of equations
(8) approximately, and the
second to use the BOC to solve AID

the system of equations (8)

exactly (within the specified Fig.1 Block diagram of the hybrid optoelectronic system.E accuracy).

3.1 Hybrid Analog Optical Processor

In this system we use the optical analog processor to solve Eq. (8) approximately. For this
system we introduce the following algorithm:

a) Use the digital processor to guess an initial solution x.
b) Use the digital processor to compute both the vector 11 and the matrix Jk.

c) Use the optical analog processor to solve the system Jo d = fk for d, a proxiriateiy,
where the superscript o's denote inaccuracies in optics or electronics.

d) Use the digital processor to read d? and compute the refined solution 1k.t = '1k - .

e) Check if the norm IIk.t - ?kjI < c stop, otherwise, go back to step (b) and recycle.

3.2 Hybrid BOC Processor

In this system the BOC is used to solve Eq.(8) exactly. For this system we introduce the
following algorithm: 4

a) Use the digital processor to guess an initial solution x0 .

b) Use the digital processor to compute both Ik and the matrix Jk"

c) Use the BOC to solve the system Jk ck = 1k, exactly for Ck.

d) Use the digital processor to read tk and compute the refined solution 1k.1 = - k.

e) Check if the norm IIk1W - IdI < e stop, otherwise, go back to step (b) and recycle.

SPIE Vol. 936 Advences in Opticel Information Processing III (t? 9881,/ 31?
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4. SPEED ANALYSIS

IThe following speed analysis is based on a system of linear equations with ze, n.

i 4.1 Digital Processor

The total time required, TDT, to solve the system of nonlinear equations usinz a

conventional digital processor is given by
n3

TDT = [-3"- +2n(n+l)]TD1ND

where

5TD1 = the time needed to do one digital operation (e.g., a multiplication),

[I and
ND = the number of iterations needed for the solution convergence.

I 4.2 Hybrid Analog Optical Processor

The total time required, TOA, to solve the system of nonlinear equations using the processor

5 introduced in Section 3.1 is given by

TOA= [n(n+2)TDL + TA1 NA0).

3 where

TAl - the time required for the optical analog processor to solve the system of linear

and equations (8) approximately,

3 NA = the number of iterations required for the solution convergence.

4.3 Hybrid BOC Processor

The total time required, TOB, to solve the system of nonlinear equations using the processor

introduced in Section 3.2 is given by

I TOB = [2 n(n+l)TD1 + TA1] IBND (11)

5 where

IB = the number of iteration needed for the BOC to solve Eq. (8) to the specified accuracy.
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4.4 Speed Advantage

It is of great interest to determine what is the break even point for the optical processor
proposed to be faster than the digital processors. This condition is defined by

5 TDT ) TOA 2)

I and
TDT • TOB 11,

I From Eqs. (9) to (11) the conditions (12) and (13) can be written as

n2(n/311x TI1 ) 1 (14)

or 
An" At ) 1 

(15)

3 for the hybrid analog processor, where

IA = NA/ND. (16)

S And for the hybrid BOC processor

(. 3 -2n(n+l)(IB-1) x 1 (17)I [ IB )x DI

or
Bn x Atl (1.3I)

I Where

An n2(n/3+l) 
(19)

a -TA

n3/3 - 2n(n+l)(IB-1)=n , (20)Bn I B

TDAt  T DI 
(21)= FrAl

The number of iterations, 1A and IB, usually are in the range of 1 to 10( The ratios, A, and B.
are problem dependent, and are much larger than 1 for large values of n. On the other hand. At
depends on the speed of the analog processor for solving a system of linear equation, which can be
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I
U
3 in the range of pec. But since the matrix Jk need to be updated every cycle, writing the Matrix

Jk on the SLM becomes the bottleneck of the processor speed. With todays technology writing a
matrix on an SLM may take a few milliseconds. So At is much less than 1. In Fig. 2(a) and !b)
the Log (An) and Log (B.) are plotted in terms of the system size, n, respectively. The ratio A 0k)
1, for n = 10, while A. 3) 1 for n L- 60 and 120, for IB 10 and 20 respectively. For the A ratio in

the range of 10-3, we can have a speed advantage for the hybrid analog optical processor for a >
50, and for the hybrid BOC processor for n1 > 120.

..!S

I ,Sm mg IiI11.

i Fig.2 Plot of log of the ratio (a) An of Eq.(19), and

(b) Bn. of Eq.(20), in terms of the size of the matrix ri.

IAgain this ratio At depends mainly on how fast we can write a m-atrix on the SLMv. By -,-e
introduction of faster SLM's the speed advantage can be gained for smaller values of n.

i 5. CONCLUSIONS

Two new hybrid opto electronic processors are introduced for solving systems of nonlinear
equations. The speed of the two processors is analyzed and compared with the speed of digital

I processors. It is shown that the main factor of the speed limitation is the speed the SLM's used to
write the matrix on. With the existing SLM's a speed advantage can be gained for n>100.
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* ABSTRACT

Analog optics is very fast but not very accurate. Digital electronics is much slower but much more

accurate. Compromise (hybrid) systems appear to be intermediate in both speed and accuracy. As there are
cases in which analog optics is too inaccurate and digital electronic-; is too slow: hybrid processors may
have an important role to play.

I. ERRORS IN ANALOG OPTICS

Despite occasional claims in the literature, making a multichannel analog optical system with all chan-
nels controllable and repeatable to 1% absolute signal accuracy is extremely difficult. Thus if analog
(number magnitude proportional to light irradiance) encoding is used, the accuracy with which numbers can be
represented is. at best. 1% of the maximum magnitude number.

Unfortunately, 1i representation accuracy of inputs does not lead to l representation accuracy of cal-
culated results. Obviously, the exact errors can not be predicted (otherwise they would hardly count as
errors!). What we can predict is some sort of average or expected error.

Rather than predict errors in specific components of a vector or matrix, we seek more global metrics.
The norm function II II is convenient. The norm of the vector

- T
V = (V1. V2 ,  . Vn )

is usually defined as

EVEN= [IvINIV2 I I VnlI 1] /N

U Three N values are common.

N = 1 1 DV 11, = I vil - IVj - I VnI

5 = 2 fl V 112 = V 1 2 V2  2 . IVn  2 11:2

N - 11 Vl 1 s ax I Vn
k=l .....n

Most mathematicians use the N = 2 (Euclidean) norm and drop the subscript. e g..

I V a [ V 2 - V2
2  - . - Vn2  ]12

We can now define a matrix norm

II A II max LA x-11
- I, N II
x

Since any x can be expanded in terms of the eigenvertors e". e2 .. • en of A.

we have

Bu x cl eI  c2 
e2 - . . . - cn en

A x = cl xA 1 e - ('2 A2 e 2 " Cn An "
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where

Clearly

SIAI-max
I

3 Equally clear is the relationship

I A- 1 1 - min (1i Ajj )\
I

A convenient measure of the ability of a matrix to lead to accurate results is the condition number. This Is
sometimes written as k(A), x(A), or cond (A). For no particular reason, we choose x(A). By definition.

X(A) - IA 1/I A-1 11 - lamax / ) lain

5 Roughly speaking, the output error is X(A) times the input or "representational" error in solving linear
equations, inverting matrices, solving eigen problems, etc.

For these introductory purposes, these observations are sufficient. With representational accuracy

fixed at 1% or less and requiring 1% or better accuracy in our results, we conclude that analog accuracy may
suffice if x(A)MI. Since, however

x(A) - IA I max /I \ I min

we have x(A) > 1. In fact, we often have x(A) )) 1. For these cases analog processors are hopelessly inac-
curate. Accuracy is always lost.

II. PROBLEMS WITH DIGITAL OPTICS

Digital optics appears to offer a possible solution. Each number is represented by multiple analog chan-
nels in time and/or space. If multiplicity in space is used and proper number representation is employed,
great parallelism and essentially-analog speed Is accomplished at the price of great physical complexity. An
additional problem In formatting and deformatting tends to slow the process and increase the power consump-
tion. These problems may not be insurmountable but they are certainly difficult enough and far enough away
from solution to motivate the search for alternative (non digital) ways of making accurate optical pro-
cessors.

3I II. OBSERVATIONS ON COMPUTATIONAL COMPLEXITY

We want to have a tool for addressing the question: "How difficult is this calculation"? The now-
traditional measure is computational complexity. The basic idea Is to break up the operations into their
most primitive parts. e.g., multiplies, and count the number of these required. Actually, we do one other

important calculation. We associate a number N with the problem size. e.g.. an N x N matrix has size N. We
then ask how the number of calculations scales with N. Many algorithms, especially in linear algebra, have
polynomial complexity. That is their complexity scales as roughly N

P , 
written O(N

P
) and often said "order of

NP." Note that it is the algorithm not the problem that has a complexity. Matrix-matrix multiplication as

we all learned it is 0(N
3
). Minimal complexity algorithms now approach O(N

2
-
5
). This difference is far from

subtle for large N.

Another way of viewing computational complexity is as a minimum price to be paid to make a calculation.

That price can be paid in spatial complexity, temporal complexity or both. We will be aiming at high speed
and thus low temoral complexity. To do this we will use a Bimodal Optical Computer (BOC) which does high
complexity tasks by analog optics and lower (essentially by a factor of N) complexity task by digital

electronics. 

IV. ILLUSTRATIVE ALGORITHM

We suspect all linear algebra problems can be solved by BOC's. We will discuss the simple A x - b prob-

lem first. Other algorithms for other problems are shown In an appendix.

We suppose we have an analog optical Ax - b solver. We are given, to digital accuracy, A and b. We
represent them in our optical solver as best we can. Our solution vector can be called xo . To check whether
Xo is adequate or not we calculate (digitally, accepting x. as fully accurate) a residual

r0 - b - A 0

SPIE Vol 634 Optical and Hybrid Computing (Y96)J/ 87
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This is O(N

2
) digitally. If I lis acceptably small, we quit. Otherwise we solve

A AXO ro

optically. Note that

A (Xo + AXo) - AX0 + AAx o

- AxO + ro

-. Ax o  (b - Ax o )
-b.

Thus x. + &x, is the desired x. Unfortunately, our analog solution for Axo is inaccurate. Our result is not

AX. but 8xo .

3We form

X1 - X0 + 6x0

5 digitally and evaluate

r, - b - Ax,

5 digitally. If i r11 is small enough, we quit. Otherwise we recycle.

That is the basic algorithm. It requires some modifications for use with optics. It also requires some
convergence analysis. After all, if the analog solutions are inaccurate, isn't it possible that the solution
will get worse not better?3 V. CONVERGENCE

It is trivial to show that if we can guarantee IrJ < Irk-ll. then convergence must occur. In Ref. 1. we3 showed that this leads to the sufficient condition

x(A) I E 1 1

where E is the representation error matrix. If we like, we can rewrite this as

I E I < I Ia /2X(A).

To first order it seems more profitable to assume that I g IE/ A I depends more on the computer than on the
matrix A and can be replaced by a universal number e, which we will call the computer accuracy. Then conver-
gence occurs if

X (A) c < 1/2.

5For e - 0.01, our hoped-for 1% accurate computer, we strongly expect convergence for

x (A) < 50.

We cannot guarantee convergence because it is the actual I E I/ A I not its fictional problem-independent
average that counts. Furthermore there is no reason to believe that convergence might not occur for much
higher x (A) values. We would expect that the probability of convergence is strongly related to

SwhereR 
- x(A)/Xest

Xest " 1/2 C

Thus we might expect convergence for virtually all R-1 problems and a much smaller fraction of R-1O0
problems. Even this statement hides a complexity. Given a problem and a computer. each particular incident
(attempt to represent and solve the problem) leads to a different result. This can even be a strength
If (a) we can afford the spatial or temporal complexity to calculate N independent answers and (b) we invoke

the central limit theorem to suggest a roughly VNiimprovement in E.

VI. LORD KELVIN'S CONTRIBUTION

Ths basic approach of using a fast, low-accuracy processor in conjunction with a slow, high-accuracy com-
puter is quite old. The history is available in Ref. I and references therein. Lord Kelvin (2) made a vital

I 88 / SPIE Vol 634 Optical and Hybrid Computing (1986)
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3 ribution: the proposal that the residual r be scaled to utilize the dynamic range of the processor well.

A Ax - r

ild be multiplied by a scaler s to form

A (sAx) - sr.

e I sr 1, 1 (the maximum representable number). It is not necessary to know a to high accuracy berause:eg (to ow ccuacy
ections to corrections are not first order critical. Since r is calculated digitally, we can also caAcu-
(to low accuracy)

3 s0 . 1/1 r 1

the same time.

5 VII. THE Ax - b SOLVER

We propose to use the 0(1) time complexity, time continuous Ax = b solver of Cheng and Caulfield(3). The

rt of the processor is the fully parallel Stanford matrix-vector multiplier. Figure 1 shows the system.
ut lights representing x components are spread vertically across the columns attenuating mask representing

Row sums of the transmitted light are detected to give components of the output vector y. For all k. we
ow

k = bk - Yk

veaxk. Here Yk is a component of the calculated

3 y= Ax.

WAVEGUIDES5 LED
ARAY Xy PHOTO0O0 D

ARRAY

Fig. 1 System layout of the Bimodal Optical Computer (BOC)

0 Cheng and Caulfield showed that smooth convergence to the Ir 1- 0 solution occurs at a rate proportional
o

3 ewaAin t/to.

'here kmi n is the elgenvalue of A with minimum I XI and to is a characteristic time (roughly signal round trip

ime) Obviously convergence requires

3 Amin > 0.

's it turns out (3), this is a sufficient condition for convergence. Calling the normalized time

ST - t/to

SPIE Vol 634 Optical and Hybrid Computing ( 986) / 89U
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and noting

Amin - Amin Amax/Amax

i Amax/x(A),

we have a relaxation rate

e -maxT/X(A)
•

Thus many things affect the relaxation rate:

to,

the inherent processor speed,

Amax.

5the maximum elgenvalue, and
x(A),

the condition number of the problem

Thus even though the operation is temporally 0(1). the convergence speed is clearly problem dependen
Easy problems (low X) converge rapidly. Hard problems, high X. converge slowly.

VIII. SPEED ADVANTAGE

Let us compare a BOC Ax - b solver with a digital iterative AX - b solver.

A single cycle requires one hybrid Ax = b solver cycle, TH , plus temporally 0(1) A/D and D/A operati
plus 2N (N+l) digital electronic operations of duration TDI. Taking the conversion times into TH , we ha
total time

3 Ta.= IH [THI + 2N (N+I) TD1]

where 1
H is the number of required iterations.

The Iterative digital Ax = b solver requires a time

TD . I D [(N'/ 3 ) 2N' TDI].

i We want

TH << TD3 or
o r E N / 3 + 2 N I -k ) - 2 k N ]1 T D I > > 1 ,

L TH1

0 (N,) PART 0()
PART

Here

~k - (IH/ID).

Let us consider the two factors separately

3The quantity
TDI

THI

S90 / SPIE Vo. 634 Opticl and Hy'bnd Computing ( 986)
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problem dependent through TH . For ultra fast electronics (nanoseconds) and small loops (to - I

nosecond). the A/D and D/A converters may be the speed limiters. For 1% accuracy

e-Amint/to -0.01.

* us

Amint - - In (0.01)

TH - - (to/Amin.) In (0.01)

r to - TD,
Q - to/T H  + 4.

6
Amin5 .early

Q > 1, for all Amin ), .22,

it perhaps not much less.

The O(N3), Ap, part depends strongly on k. Obviously k > 1. Hopefully we can keep k - 1. Let us examine
irious k > 0 case plotted in Fig. 2. We see that large advantages occur for low k (rapid convergence) and
arge N. That is we win for large, easy, or (preferably) large and easy problems. If, for example. Q - 0.1.

obtain a factor of 10 advantage for all k-N products above the horizontal line in Fig. 2. If the problem
ze is, say, 200 and k - 1. the advantage can be many many orders of magnitude.

260

20

220

a, 200
K

la16 0 -k 1k i

£t r 40-
2t0

I ,20k= 10

Z Io

soSo-
40

20°

0 40 60 120 1SO 200 240 280

SIZE or THE MATRIX. N

Fig. 2 The operation advantage, ApI IX. SIMULATIONS

We can add Gaussian stochastic errors to the "true" numbers to simulatevarious accuracies. Figure 3
hows the H as a function of x(A) for various problems, where I r I / U x I < 10-' is required. Note IH /6

S.ince I0 may be 5 to 10. Thus 1:10 accuracy is a low k situation. Note as well. that convergence tends
.0 occur even for R > 1 (R = 4 in Fig. 3). We have achieved convergence for R's as high as 60. We mightrant to relax from c-o.o (Fig. 3) to much less trying cases. Figure 4 shows that

IH 0CC,

I very benign result.

V
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1a

a = .0i 5ai.ma

x

S25 .01
0 25 b I rna
m 20

S 15

I2U z 10-

5

5 0 200 400

CONDITION NUMBER FOR A

Fig. 3 Computer simulation results for the number of iterations needed for con-

vergence of the solution, plotted vs. the condition number.

1 0
150 K(A) = 150
140- = .01(b
130 ab
120 G x =.O.(xl)max

C- 110-

-100-I ,1o10so-

80

X TEFso-
S so-

2O-

10-

00 0.64 0.08 0.'12 0.16S 0:2 0.24 0.'26
~STD Error In The Maetk'* Matrix

Fig. 4 The number of Iterations plotted vs. the error's standard deviation in
I the matrx's mask, for a matrix with a condition number=IS0.

X. THE FUTURE

Besides building a moderately accurate BOC for testing, we will investigate improvements. Two lp
ments are sugitsted below.

First, we can operate on A by "equilibration" to get an equivalent matrix A
1 

such that

I Tht Isx (A') < ( A).

I That is
Ax = A (DD-')x

(AD) (D-'x)SA I X1.
Here D Is a diagonal matrix. For equilibration we might require row norm equality. In our early expe
this led to roughly 20% improvement in condition number.

Second, we can use "convergence factors" to try to force or Improve convergence.

I
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3 ~ rather than

xk = k-1 - Aik-l'

sf - ;k- - e k-I Ak-1.

lever choice of the Gk', we may be able to improve performance.

I APPENDIX

In this appendix we present algorithms for solving the Inverse of a matrix and the eigenvalue problems
Ig BOC.

The Inverse of a Matrix

For an NxN matrix A the inverse matrix A-' is defined to satisfy the following relationship

AA-1 =1, where I is the identity matrix (Al)
:h can be rewritten as

A(-', A2-1 ..... A-] = I (A2)
11 12 In

re A
-
' is the J-th column vector of the inverse matrix A-' So eq. (A2) can written as n systems of lin-

equations, which can be solved individually using the BOC as outlined in section IV.

Another method for solving the inverse matrix problem is by using the -IPan-Reif method (4). If the

rix B=A
-1 

then define the error matrix E as

E - I -BA (A3)

a-' can be represented in terms b and E as

3 A-' = (A-1B-1)B - (I-E)-1B (A4)

(1-x)- - lx-x8=x3.. for x 1. (A.5)
I Il-x

iilarly.

A-', (1+ E * E
2 

* E E3 + . ... )B (A6)

if we start with an approximation for the inverse of A by B0. then the error matrix E1 will be given by
(A7)

E1 - I - B0 A

in more general form for an iteration k
E k .1 -I

A  
(A7)

= (I Ek . ..... ) Bk-l (A8)

n and Reif introduced a simple way of evaluating B0 the initial approximation of A 1. Define the factor t

I I (A9)

(max A(I.J) I (max I I A(IJ) I)

IJ Ii

ich is the product of the maximum magnitude of the sum of the rows of A by the maximum magnitude of the sum
the columns of A. Now B0 will be given by

e A 0 = t AH (A1O)

eCre A
H 

is the Hermitian transpose of A

I
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3 We now introduce an iterative method for solving the inverse problem. Eq. (A9) can be written as for the

case of small error matrix

3k = (I + Ek ) Bk I , k=.2 .... (A12)

Now let us outline the iterative method for finding the inverse of A:

1) find 0 - t AH

ii) Ek - I B k.lA. k-l.2 ....

iii) Dk - (I E Ek) Bk_l k-l,.,..

iv) Cycle iteratively through steps ii) and iii) until all elements of Ek are within the required a-7curacy

then terminate the proces and Bk is equal to the inverse of A. Doing this method using a digital computer
requires a long time of operations and a large memory space for the matrix multiplication We can do this
matrix multiplication using the BOC in mu less time with the same accuracies.

3 2. The Eilenvalue Problem

Determining the eigenvalues and their corresponding eigenvectors Is a very fundamental and important
problem in linear algebra. Une of the most powerful method for determining the eigenvalues and elgenvectors
is the inverse iteration method (5). For an NxN matrix A tne eigenvalues Ai and their corresponding

eigenvectors xi are defined by the equation

AX = ixi (A13)

Let A has an n destinctive eigen values such that

AI I A l l 2  i> ... An ,
(A14)

Assume q 
= AI then

(a qI) ;(p+l) (A15)

where (p+l) = (P 1) / y (pAl)16

-(p) - (p)
Y =x1 . and I/I y I ® = A i -q as p - (A17)

so by assuming a value for the vector z then solving the system of equations

given in Eq. (A15) we get ; and from eq. (al6) compute a and we keep iterating uatil the vector yP
become stable th,:n we terminate the Iterations. This determines both the eigenvalue and the eigenvector
very accurately.

The initial value of the eigenvalue q can be tetermined using Gerchgorin's theorem (6).

for an nxn matrix A. let us define the radius - as

m rk akj I (A18)

J=k

where a as the kj coefficient of the matrix A. rk is a radius of disk Dk centered at akk within which an
eIgenvaee will lie

Dk - (A A-akk I rk) < k - 1.2,3,...,N (A19)

3 Then each elgenvalue of A must lie within the union s of these disks

-U k (A20)

3 K-I

So. after we determine the initial elgenvalues for the matrix A we can use the inverse iteration method to

find the more refined values for the eigenvalues and their corresponding eigenvectors. In this process we

94 / SPIE Vol 634 Optical and Hybrid Computing (f986



I
I will use the BOC to solve the set of equations (al5) within a reasonabie accuracy. this method will have the

speed advantage over the all-digital processor because again we reduced the problem to a set of linear equa-
tion solution.
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3 ABSTRACT

The use of the Bimodal Optical Computer (BOC) in determining the weights for an
adaptive phased array radar is introduced. Interference canceling is presented for two cases:
first assuming the direction of the jammer is known, secondly no a priori information is
assumed. Effect of the jammers on the array pattern is shown for up to four jammers.

1. INTRODUCTION

The sensitivity of a signal-receiving antenna array system to interfering noise sources can
be reduced by suitable processing of the outputs of the individual array elements. The
processing of the output of the array system acts as an adaptive filtering system i-4. The
adaptive phased array radar systems provide the means of suppressing unwanted interference
signals. This is achieved by nulling the array pattern at the direction of the jammers. Manyalgorithms have been introduced for the adaptation process and these are reviewed byMonzingo and Miller2.

In this paper we present a new technique to determine the weights for the adaptive array
using the bimodal optical computer (BOC)5-T. The bimodal optical computer is capable of
solving systems of linear equation very rapidly with high accuracy. In the adaptation process
we reduce the optimization problem to a system of linear equations, which in turn is solved
using the BOC.

In Section 2 we review the basic theory of adaptive phased array radars. The bimodal
optical computer algorithm for solving the optimization problem is presented in Section 3.
Computer simulation results are given in Section 4. Conclusions and final remarks are given in
Section 5. 

2. ADAPTIVE PHASED ARRAYS

In adaptive phased array radars the incoming signal is detected by an array of sensors. The
detected signal is a combination of the target signal plus interference and noise signals. The
system is adjusted in such a way to suppress the interference signals reception withoutaffecting the desired signal.

In this section we consider the two general cases of interference canceling: first by assuming
that the interference signal direction is known; secondly by assuming no a priori information is3 known about the interference signal.

2.1 Interference Signal Direction is Known

SWhen the interference signal direction is known the weights wi's of the array can be chosen

SPIE Vol 886 OItoelctronic Signal Process ng for Phosed-Array Antennas (988) / 17?
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to suppress the interference signal. Let the system shown in Fig. 1 be used to demonstrate this
adaptation technique.

I \ / ,x/"

Fig. 1 Array configuration
for interference
canceling

I
I

I The output signal of the array s(t) is given by I

s(t) = P[w I + w3) sin w0t + (w2 +w 4 ) sin(wot - i-

+ I[w1 sin(wot -0) + w2 sin(wt - 0- i)

+ w3 sin(wot + 0) + w4 sin(wot + 0-()
I where

P = the pilot signal,

I = the interference signal, and

0 =the phase shift

S0 f 'sint" (2)

To cancel the interference signal and to make the signal s(t) equal to the pilot signal, we5 need to solve the following system of linear equations for the weight wi's:

w1 + w3--1 I

w 2 + w 4 = 0
(w I + w3 ) Co" - (w2 - w 4 ) sin# = 05 (w2 + w4 ) CoSO+(w -w3)sinO .

The size of this system of linear equations depends on the number of sensors in the array.
The number of jammers can make the system under or overdetermined, which are both time
consuming algebra problems.
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2.2 No a irori Information is Known

This is the most general case where we assume no information about jammers. The system
used in this case is shown in Fig. 2.

Fig. 2 Basic adaptive S(W
array structure
with known desired3 signal

3Each of the n sensors receives a signal xi(t) which is in turn multiplied by a variable weightwi. The output signal s(t) is compared with the desired signal d(t), their difference, the errorsignal c(t), is used to determine the value of wj's. The output of the array is

I a
s(t) = x.i(t) Wi (4)

or

Is(t) *T 1 (5)I w h ere 
w I t

Eah fhea enor riv a gal *i(t) wihi ntr utpidb aibewih

**[j. .%(0 (6)

For digital sampled data

o0 s(t) =)T , (7)

and

r c(j) d(j) - s(j) = d(j) - *T i(j) . (8)3 The optimum value of the weights, wi's, is the one reduces t(j) to zero or at least minimize it.

For N samples of data the optimum weights satisfy the following set of systems of linear
equations:
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.T t()=d(1) 1

*'t(I=d~i)(9)

d, (* N,)

The N sets of equations have n unknowns, and usually N >> n, and are inconsistent and
over specified. The optimization problem can be rewritten as

5 °Pt (10)

where

xx xIX

IXlXl xnxn.I Rxx= EIt}- E  ~ l  XX ' (11)

I and

5X t=E (U). (12)

The matrix R., is called the covariance matrix, where E{} is the ensemble average.

I Many algorithms are introduced2 to solve for the weights in Eq. (10). Some of the popular
algorithms are the least mean square (LMS), and the direct matrix inversion (DMI).

I We'll briefly mention the DMI algorithm since it leads to the algorithm introduced in this
paper. Eq. (10) cannot be determined exactly using a limited number of samples of the input
data. For practical consideration a small number of samples is detected to be used in

determining w. The estimated value of Eq.(10) can be given by

I *=Rxxtxd .(13)

i where

IkXX is the sample covariance matrix, and ixd is the sample cross-correlation vector, and are

given by

I ft.x - 1 I t(jT) J )(14)

j=1

I
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H and

r,~=k .>(j) dO)(15

j=1

and K is the number of samples. The DMI algorithm determines the inverse of the sample

covariance matrix Rxx, then from Eq. (13) evaluates.

3. THE BIMODAL OPTICAL COMPUTER ALGORITHM

Using either the LMS or the DMI algorithms, depends in its convergence on a number of

factors, the most important one of them is the condition number of the matrix ft=. If the
matrix ft. is ill-conditioned or sinular, it either converges very slowly or the inverse does not
exist, respectively. In such cases other methods might be used, but they are lengthy and time
consuming, so they are not suitable for a system where the time is a very crucial element.

We have shown in previous publications6"7 that the bimodal optical computer is capable ofI solving such problems, where the system of equations is ill-conditioned, singular, overspecified
or underspecified. The BOC is a hybrid system in nature, Fig. 3. It uses analog optics to solve
the problem approximately but rapidly
and it utilizes the digital electronics to
refine the solution, in an interative
scheme.

I The optimization problem for the A

weights * introduced in Section 2, can *,a*wI be rewritten in the following form,
from Eq. (13)

ftx ?d (6

Eq. (16) is a system of linear equationsI can be solved using the bimodal
optical computer. Among the
advantages of using the BOC over the h
conventional technzquu are: Speed,
especially for large size arrays,
convergence of the solution for difficult A/*

problems, ill-conditioned singular
systems,which is the case of most of
the adaptive array radar problems.

Fig. 3 The Bimodal Optical Computer

I In the following section we present some of the preliminary results from computer
simulation studies of the BOC in processing adaptive array problems.

I
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4. SIMULATION RESULTS

Two simulation experiments are presented in this section. In the first experiment we used
a five element array, and assumed the directions of the jammers are known. In the second
experiment a 2 element array is used and no a priori information is assumed.

In Fi. 4 the array pattern of the 5 element array is plotted as a function of the angle,
Fig. 4(a) shows the array pattern for the adaptation. In Fig 4(b) a jammer at 45o wa
considered, the pattern after adaptation is shown, the jammerknown. The array pattern after
adaptation has reformed in such a way to null the jammer signal. In Fig. 4(c) four jammers
are considered at 450, 800, 1200 and 1500, the array patis again reformed to null all the
jammers signals reception.

I U (a) (b)

I " .

(C)

, U "

., ,1 _______ •III M

Z

-*A

Fig. 4 Phased array pattern for 5 elements, (a) before adaptation, (6) adapted pattern
for a jammer at 45o , and (c) adapted pattern for four jammers at 45o, 80o, 120o,
and 150o.

176 / SPE Val ON8 OprooeItonei Signs/ Pro essing tar Phased-Anay Antennas (1988)



I
I

In Fig. 5 the BOC was used to solve the adaptation problem assuming no a priori
information about the interference signals. Fig. 5(a) shows the two-element array pattern
before adaptation. In Fig. 5(b) to (d) the pattern is plotted for a single jammer placed at 300,
450 and 600, respectively. In all these plots the array adapted to cancel the interference signal
in each of the given cases. In all of the above results the jammer signals is considered to be of
the same strength as the desired signal, and the convergence of the solution obtained in less
than five iterations. Also the condition number of the R= is between 106 and .!

(a) (b)

| i as•

I Fig. 5 Two-element phased array pattern, (a) before adaptation, (b) to (d) adapted
patterns for single jammers at 30o, 45o and 60o, respectively.

84- CONCLUSIONS

_ The bimodal optical computer is shown in these preliminary results to present a powerful
mean in solving adaptive phased array problems. We are considering in the future work larger

S array sizes, receiver noise, and very strong interference signals.
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ADAPTIVE ARRAY RADAR DATA where

PROCESSING USING THE BIMODAL P - the pilot signal.
OPTICAL COMPUTER I - the interference signal.

a A. Q Ab 0 - the phase shift. (2)
Electrical and Computer Engineering Department 21rdUniversity of Alabama in Huntsville 0-- sin .

Huntsville. Alabama 35899

KEY ITERMS To cancel the interference signal and to make the signal
Adaptive arrays, optical computing, optical data processing s(t) equal to the pilot signal, we need to solve the following

system of linear equations for the weights w,:

ABSTRACt
The use of the bimodal optical computer BOC) in determining the w1 + w 1,
weights for an adaptive phased array radar is introduced Interference w, + w4 0,
canceling is presented for two cases: (1) assuming the direction of the ( w, + w, )cos0 - (w, - w)sinO - 0, (3)
jammer is known and (2) assuming no a prion rinformation. The effect of
the jammers on the array pattern is shown for up to four jammers. (1w, + w,)cos + (w+ - w.) sin 0 -0.

1. INTRODUCTION The size of this system of linear equations depends on the
The sensitivity of a signal-receiving antenna array system to number of sensors in the array. The number of jammers can
interfering noise sources can be reduced by suitable processing make the system under or overdetermined. both of which are
of the outputs of the individual array elements. The processing time consuming algebra problems.

of the output of the-array system acts as an adaptive filtering
system [1-4]. The~adaptivephase array radar systems provide 2.2. No A Priori Information is Known. This is the most
the means of suppressing unwanted interference signals. This general case where we assume no information about jammers.
is achieved by nulling the array pattern in the direction of The system used in this case is shown in Figure l(b). Each of
the jammers. Many algorithms have been introduced for the the n sensors receives a signal x, (t) that is in turn multiplied
adaptation process and they are reviewed by Monzingo and by a variable weight w,. The output signal st is compared
Miller [2]. with the desired signal d(t) and their difference, the error

In this paper we present a new technique for determining signal i(t), is used to determine the value of w, The output of
the weights for the adaptive array using the bimodal optical the array is
computer (BOC) (5-71. The bimodal optical computer is capa-
ble of solving systems of linear equation very rapidly with (4)
high accuracy. In the adaptation process we reduce the prob- s(-t) 'x,(I) (4)

lem to a system of linear equations, which in turn is solved
using the BOC. or

In Section 2 we review the basic theory of adaptive phased

array radars. The bimodal optical computer algorithm for s( t) wrx. (5)
solving the adaptation problem is presented in Section 3.
Computer simulation results are given in Section 4. Conclu- where
sions and final remarks are given in Section 5.
2. ADAPTIVE PHASED ARRAYS w - and x - i' t) (6)

In adaptive phased array radars the incoming signal is de- [" .
tected by an array of sensors. The detected signal is a combi-
nation of the target signal plus interference and noise signals. For digital sampled data
The system is adjusted in such a way to suppress the inter-
ference signal reception without affecting the desired signal. SO) , Wrx( j) (7)

In this section we consider the two general cases of inter-
ference canceling: (1) by assuming that the interference signal and
direction is known and (2) by assuming no a priori informa-
tion is known about the interference signal. ((j) - d( j) - s( j) d( J) - wrx(j). (8)

2.1. Interference Signal Direction is Known. When the inter- The optimum value of the weights w is the one that reduces
terence signal direction is known th, weights w, of the array ( j ) to zero or at least minimizes it.
can be chosen to suppress the interference signal. Let the For N samples of data the optimum weights satisfy the
system shown in Figure 1(a) be used to demonstrate this following set of systems of linear equations:
adaptation technique. The output signal of the arrray s(t) is
given by (11 Wrx(l) -d()

s(t) - P[(w + -)sinuot + (w, + w)sin(, t - 0 - ,1Tr)] (9

+I[w, sin(iaot -9) + w, sin(€,ht - 0 - 7r) () = d()

+2w3 sin(Cu t + , sin( uNtO - Lr)]. () wrx( ) o Sd(e ).
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Figure 1 Basic adaptive array system with (a) signal and noise directions known and (b) no a pnon information assumed.

The N sets of equations have n unknowns, and usually the input data. For practical consideration a small number of
,N :, n, and are inconsistent and overspecified. The optimiza- samples is detected to be used in determining w. The esti-

tion problem can be rewritten as mated value of Eq. (10) can be given by
W R-, r,,, (10) * - , (13)

where where R,, is the sample covanance matrix and r,, is the
- Er )  ) sample cross-correlation vector that are given by

Kand ,,=K- xsx()(1)

r,,- E (xd}. (12)ax and
The matrix R,, is called the covariance matrix, where E( ) is
the ensemble average. I )

Many algorithms are introduced (2] to solve for the weights ?" - E %( (IS)
in Eq. (10). Some of the popular algorithms are the least mean
square (LMS) and the direct matrix inversion (DMI).

We will briefly mention the DMI algorithm since it leads to K is the number of samples. The DMI algorithm determines
4 algorithm introduced in this paper. Equation (10) cannot the inverse of the sample covanance mamx R_ and then

be determined exactly using a limited number of samples of from Eq. (13) evaluates *.

MICROWAVE AND OPTICAL TECHNOLOGY LETTERS , Voi I No 7 September 1988 237



I A

LED PHOTODIODE
ARRAY xARRAY

£V

I

:A/10 DIG ITALDA

AD PROCESSOR 0/

Figure 2 The bimodal optical computer used in solving a system of linear equations.

3. THE BIMODAL OPTICAL COMPUTER ALGORITHM We review here the BOC algorithm in solving the system

Convergence of either the LMS or the DMI algorithms de- Ax - b.
pends on a number of factors,- the most important being the
condition number of the matrix R,,. If the matrix R, is (a) Solve Ax - b using the analog optical processor to get

ill-conditioned or singular, it either converges very slowly or Xo.

the inverse does not exist, respectively. In such cases other (b) With a dedicated digital electronics processor. read x,,
methods might be used, but they are lengthly and time con- and evaluate the residue

suming, so they are not suitable for a system where time is a
very crucial element. r, = b - Ax) - Ax - .4x, = A( Ax,). (18)

We have shown in previous publications [6 7] that the
bimodal optical computer is capable of solving such problems, (c) Normalize r,, to use the dynamic range of the system.
where the system of equations is ill-conditioned, singular. (d) Solve optically the system
overspecified, or underspecified. The BOC is a hybrid system
by nature; see Figure 2. It uses analog optics to solve the Az = sr (19)
problem approximately but rapidly and it utilizes the digital
electronics to refine the solution, in an iterative scheme. where

The adaptation problem for the weights w introduced in
Section 2. can be rewritten in the following form, from Eq. z = s( I.x,). (20)
(13):

and s is the radix used in normalizing r.
A ,* - .i,, (16) e) Evaluate electronicallv

which can be written as x = , -a.,, (21)IAx -b. (17) and

where hr, = b - 4x1. (22)

A - , (f) If 1r11 is small enough, stop. Otherwise. go to (c) and

x , recycle.

b f,,.

Equation (16) is a system of linear equations that can be In the following section we present some of the prehminar,
solved using the bimodal optical computer. Among the ad- results from computer simulation studies ot the BOC in
vantages of using the BOC over the conventional techniques processing adaptive array problems.
are speed. (especially for large size arrays), convergence of the
solution for difficult problems, and ill-conditioned singular 4. SIMULATION RESULTS

systems, which is the case for most of the adaptive z.xray radar Two simulation experiments are presented in this ,ection. In
problems. the first experiment we used a five element array and assume
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Fgure 3 Phased array pattern for five elements (a) before adaptation. (b) adapted for a jammer at 450, and (c) adapted for four Jammers at 4

8IROAV 1200, Od 1STo.

I I. 01I 1 ( _)

-! I -II, (c)( )
1 0

I 0 
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S Figure 4 Two element phased array pattern (al before adaptation and (b)-(d) adapted for single jammers at 30
° , 

450
, and fi 0° respectively
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I. the directions of the jammers were known. In the second
experiment a two element array is used and no a priori
information is assumed.

In Figure 3 the five element array pattern is plotted as a
function of the angle 4. Figure 3(a) shows the array pattern
before adaptation. In Figure 3(b) the pattern after adaptation
is shown for a jammer at 450 . The array pattern after adapta-
tion has reformed in such a way that it nulls the jammer
signal. In Figure 3(c) four jammers are considered at 450 , 800.
1200 , and 1500. The array pattern is again reformed to null all
the jammers signal reception.

In Figure 4 the BOC was used to solve the adaptation
problem assuming no a priori information about the inter-

ference signals. Figure 4(a) shows the two-element array pat-
tern before adaptation. In Figure 4(b)-(d) the pattern is
plotted for a single jammer placed at 300, 450 . and 600,
respectively. In all these plots the array adapted to cancel the
interference signal in each of the given cases. In all of the
preceding results the jammer signals are considered to be of
the same strength as the desired signal, and the convergence of
the solution obtained in less than five iterations. Also thejcondition numbered of the R '. is between 100 and co.

S. CONCLUSIONS
I The bimodal optical computer is shown in these preliminary

results to present a powerful mean for solving adaptive phased
array problems. We are considering in future work larger
array sizes, receiver noise, and very strong interference signals.
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Abstract

An optical-hybrid matrix processor is presented and coapared in its speed with a digital electronic
processor. ptical-hybrid matrix processors are shown to be far more superior in their speed in solving
systes of linear equations. This advantage in speed increases with the increase of the matrix size. The
problem of the convergence of the solution using the optical-hybrid is investi(ated. It is found that even
with using elctro-optical systems with an error as high as 5% in the I/O aevices, convergence was achieveu for
matrices with condition numbers as high as 150. Some means of improving the condition number of a matrix are
also intoduced.

I. Intrduction

Analog optics is very attractive for signal processing and computing because of its ability to process
uo-dimenstional data in parallel very rapidly. Unfortunately, this high speed parallel processing achieves
only low accuracy because of the nature of the analog processing especially in the optical systems. These
accuracy problems rise from errorsIin representing and reading tne signai using the electro-optic L/O devices.
The method introduced by Caulfield (which is outlined in section II of this paper) combines the high speed and
parallelism of the optical processor and the high accuracy of the digital carputer, using Lord Kelvin's
iterative method.' In section II of this paper we present a comparison between the time required to solve
a systam of linear equations using the optical-hybrid processor to that required by the digital processor. In
section III we present a numerical analysis of the convergence of the solutions for a linear algebraic
equations as a function of the condition number of the matrix and the errors in representing the I/O data in
the optical system, using computer simulation of the optical-hybrid processor. In section IV a conclusion andI final reriarks are drawn.I 

II. Computation speed analysis

The optical-hyDrid processor works in the following manner for a system linear equations (it is also app-I licable to other problems- both linear and nonlinear),

Ax-b , (1)

where A is an nxn matrix, x and b are nxl vectors.
a) Using an optical analog processor we can calculate an approximate solution x_ of the linear system, the
superscript O's indicate inaccuracies in the optics and electronics, so the equations solved by the optical
processor are

3A x0 -b . (2)

b) Pnerber the solution to a high accuracy with the digital comuter. Use a dedicated digital processor to
calculate the residue

r - b - A x0 - A ( x - x ) = A6 x . (3)

c) Use the optical analog processor to solve the linear equations

APY,- sr, werey=s Ax, (4)

for x, where s is a "radix", or scale factor chosen to rake a good use of the dynamic range.
d) Use the digital processor to refine the solution for x

xI - _ + a x. (5)

If the refined solution xl is accurate enough terminate the iterations. Otherwise go back again to d), c) and
d) for a more refined soTution following the above outlined proure.
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7b get sare quantitative values for the speed of this process ompared to that carried by the digital
omputer, we will calculate the number of operations required by each method then multiply it by the time
reqired by each operation, we are qoing to consider the number of operations regardless if they are additions
or Multiplications.

Let us onsider an nrm matrix A , the time required for one iteration of the procedure outlined above,
To,, is given by

To, - TAI + 2n ( n + 1 ) TDl, (6)

where TA, - the time required to solve A x - b by analog optics,
and IDJ - the time reqg.red to make one-digital operation.
Therefore the time required to make 10 iterations with the optical processor is given by

I While the time req ed by the digital computer to solve the linear equations using the Cholesky's method3

in ID iterations takes the time, TD, given by

TD ( n3 / 3 + 2 n2 ) ID T D (8)

The condition wtich we need to satisfy to have an advantage In tinme in usizrq the optical processor over the
digital processor is

TO " TD . (9)

i Therefore, for a clear time advantage for the optical-hybrid processor, from Eqs. (7)-(9) we want that

Io { TA, + 2 n ( n + i ) TDI) << ( n3 / 3 + 2 n2 ) ID TD, (10)

I k { TA. + 2 n (n + ) TDI} << ( n3 / 3 + 2 n2 ) TD1  (11)

where k = 10 / 1D Eq. (11) can be rewritteii in the following form

n3 / 3 + 2 n2 (I-k) - 2 k n T0I / TAI >> 1 (12)
k

The advantage of using the optical-hybrid processor over the digital processor in speed is obvious fran
Eq. (12), and it increases by the increase of the size of the matrix n. To examine this condition very
carefully, let us rewrite Eq. (12) in the following form

I A A >> 1 , (13)

A e 2 n 2 ( I - k -nk 1 /k , and (14)

AI - To, / TA. 15)

Here Al is an "inherent advantage". A single analoq operation is much faster than the digital one. The whole
Axb solution will be slower than a single digital operation, but the analog optical Ax = b solver works at
speeds independent of n. On the otherhand, TI is operation dependent, also it includes he time in perfor-
mu the operation and in storing and retrieviq the data from the rmmry of the omiputer,wtucd is a time
oonsumi.ng especially with the increase of n. en0 see-
Ap is a prob l em related advar age, it a function of the .10.a
size of the matrix n and the ratio of iterations k. The
operation advantage Ap is ploted in Fig. 1 as a function
of n and k. It is clear that A. increases very rapidly
by the increase of the size n, even if the number of

iteration in the optical-hybrid processing scheme aremuch larer than those for the digital processing,

while in reality they will be approximately the same k""l
for the same prolem co nitions. k-10"k-20

6MAIM SIZE, n

in Eq. (4) plotted vs. n in terffs

of k-l,10 and 20.3 64 / SPIE Vol 639 Optical Informaton Processing II (1986)
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III. Convergence of the solution

The block diagram of the optical-hybrid processor is shown in Fig. 2. The solution of the linear
algebra c equation will be done optically using the method introduced by Cheng and Caulfield4 . The question
of h onvergence in discussed in cheng and Caulfield paper and it is found that if the matrix has positive

eigenva:-es than the solution will converge regardless of the size of the mi. cix. This simply applies to step

c) or M PROCEDU M I N L SECTI( II. We turn next to the total process.

PLANAR WAVEGJIDES

I Fig. 2 syste, layout of the optical-hybrid processor.

In this section of the paper we present a numerical analysis of the cnvergence of the solution and its

3depesdre on the ondiion rnumber of the matrix. The cndition number of the matrix A is defined as

K ( A ) jIJAlI'HA'j' (16)

where I i s the norm of the matrix. The cndition nurber is a measure of the accuracy of the A x = b
soluu.n . The larger the condition nueber the less accurate the result achieved with any fied accuray

azm~uter. In this paper we report a simulation of the system sh~n in Fig. 2 by a xiiputer alg~ritm~ to stu.dy
the onn.vrgence of the solution of the linear equation. The coputer algorithm~ simulates the analog optical

I proesor and the electro-optic I/O devices in such a way that allows us to onntrol the errors occuring in

represe.ting the matrix oy an optical mask, and also the error in readinag the #otodicde voltage and in3, onve.nq the nput in the system to light by the LEDs. TO simulate the eperimental envro'ent we have
used a Gaussian randon number generator to generate the error signals.

T-he curve shw in Fig. 3 is the result of a simulation experurent for the optical-hybrid processor with
I the foL.%ng dharactaristics: The matri.x A can be represented by an optical mask ( a photgraphic film or

a scetial light mocdulator) with an error of stadard deviation of 1% of the maxumamn coefficient of the matrix.
The vec-or x can be r with an error of standlard ceviat~ion = 1% of t ne maximun element of the vector x,

alothe error standard deviation in representing b by the pNotodixe is 1%. From Fig. 2 we see that the
I soluticrs converge with an error less than one mlt~ionth ( or any other accuracy) even for ocndition number

1500. For a~ndition numbers less than 250 the number of iterations reqied are less than 20. In order to
guarante (x~verqence with 1% accuracies, we nust restrict matrie to axdition nurbers less than 50.

iO study the effect of the error in representing the matrix by an optical mask on the nuber of itera-
tior to get the solution within 10"6 accuracy, we have chaned the standard deviation of the error in

repreiting the matrix over the range fran 1% to 30% for a ondiition nurber 150 and we calculated the nuzmber
Of iterations reqied for each case. The relatioship between the nurb.r of iterations and the standard
deviation of the error in representing the matrix is plotted in Fig. 4. As the error inoreases the numnber of
iterations inorease in an aln~t linear way. Even for an error of 30% in representing the matrix, the
solution still converges. This intresting result proves that even by using inaccurate optics ,optical-hybrid

prosor can still solve the linear system of equations very accurately
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The condition numtber is one of the determining factors of the speed of convergence of the solutions as

can be seen in Fig.4. galler condition numbers yield faster convergence of the solution. In searding for a
way to izmprove the condition numbter of a given matrix, we found one way of doir that is by normalizing the

matrix in the following manner

aa? a /.(a +a 2  .......... 4 a2  )1/2 ; - 1,2 ......... n (17)

ter a. 's are the coefficients of the matrix A. This normalization decreases the value of the condition
nunberlof the matrix which In turn increases the speed of the convergence process. Fig 5 shows a plot of

the condition number before and after the norrmlization of the matrix, fron which we can see an =Vrovement ini the condihtion number after normlization.

i 2000.

1000.

! -
0 1000 2000 3000 4000
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Fig. 5 The condition .number of the matrix after it

has been norralized is plotted versus the
original condition number.
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I
M IV. Conclusions

zie optical-nybrid matrix processor discussed in this paper have shown very promising results, it Is
clearly very compatable n both speed and accuracy with the digital processor, in solving a system of linear
equat.ions. Tae aLvantage of the speea of the processor increases with the increase of the size of the matrix
The analysis carried out in this paper is not liinted to the solution of a system of linear equations but is
applicable as well to other linear and nonlinear problems. Another interesting result presented here is that
the optics wnich is used in the processor can have a tolerence of 5 to 10% without sacrificing the accuracy
of the solution, although it is shown that the less error in both optics and electronics the faster the
solu-cion will converge.
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i ABSTRACT

1 An algorithm for computing the eigenvalues and the corresponding

eigenvectors of a matrix using the bimodal optical computer (BOC) is

3 presented. Accuracy of the solutions are similar to that of the

digital computer. The speed of the computation is compared to the

existing super ccmpxters. The BOC is shown to have advantage in speed

£ especially for large size matrices. The advantage in speed increases

by the increase of the size of the matrix.I
U
I

I

'I
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£ I INTRODUCTIO0

3 Eigenvalue problems arise in many physical problems. The

eigenvalue solutions are often performed by iterarive methods using

3 digital computers. I Solving this class of problems is a time

consuming. The time required for determining the eigenvalues and

eigenvectors increases with the size of the matrix. For matrices of

3 very high rank the digital computer bocome very slow. Optics appears

to be a natural candidate for tackling such a class of problems.

5 Previous work on optical eigenvalue processors offers potential

accuracy problems. 2,3,4

I In this paper we introduce a method to determine the eigenvalues

and their corresponding eigenvectors for a positive definite matrix

using the bimodal optical computer (BOC). 5,6 The accuracy of the

solution is equivalent to that of a floating point processors because

of the hybrid nature of the BOC provided that convergence occurs at

3 all. The method is outlined in section II. The speed of the algorithm

is analyzed in section III. Conclusions are drawn in Section IV.

3 II EIGENVALUE ALGORITHM

3For an nxn matrix A the eigenvalues and the eigenvectors are given

by

I A ej X ) e1 ,i=1#2 .......,n()

m2

I



I

where It's are the eigenvalues of the matrix A and e I's are the

3 corresponding eigenvectors. In this paper we are going to consider the

case where the eigenvalues of the matrix are all positive, real and not

I equal, i.e.

I
There are many methods for determining the eigenvalue and

I eigenvectors of a matrix. One of the powerful methods is the inverse

3 iteration method. 4,7 The inverse iteration method is outlined as

follows:

5 a) Assume an initial value for the eigenvalue I[ = q| and an

eigenvector z O0). The assumption for the initial value of the

3 eigenvalue can be done using the Gershgorin circle theorem.

b) Then solve the system of linear equations

(A-q 1)y (P) , 2 3 ..... (3)

where z p 1) = y p 1) / IP1 , (4)

11 f • II, is the infinite norm, and I is the identity matrix.

As p4 y=ej and 1/ XjY(P) ® =  j-qj. (5)

I

I
I



I
3 Of course other norms will work and even work somewhat better, but the

infinite norm is very easy to calculate.

3 The time consuming operation in this method is solving the system

of linear equations in (3) for y (P + ). This system of equations can be

3 solved using the bimodal optical computer (BOC) very rapidly relative

to electronics, especially for large n. 5 The algorithm which we

propose in this paper for determining the eigenvalues and the

3 eigenvectors using the BOC is as follows:

a) Assume a value for q, and z(0) using the digital processor.

5 b) Solve the linear system of equations

(A-q I) y( I) = Z (6)U
for y ' using the BOC.

c) Compute the norm IIy(1) Iloand z'2 ) using a dedicated digital

processor.

d) If Ily I II- l&O) 11 1 , where fis the error acceptable in

computing the eigenvalues and the eigenvectors, then stop the

iterations otherwise go back to step b).

3 In this algorithm we use the analog optics to compute an

approximate solution for the system of linear equations which is then

5 refined using the digital processor. This refined solution has the

digital computer accuracy but determined much faster. This

computation is done using the BOC which is shown in Fig.l. The

3 convergence of the solution of the system of linear equations using

£4
I
U



I the BOC is discussed in the paper of Abushagur and Caulfield. 6

I
i III 2_d 2f the Algithm

3 In this section we present a comparison between the speed of the

digital computer in determining one eigenvalue for the matrix A

3to that of the bimodal optical computer.

The time required for doing one iteration of the procedure outlined

I in Sec.II using the digital computer ise

TD= D 7n 3 /4)T 1 , (7)1
where T D I is the time required for one digital operation. The time

I required to do one iteration ,T0, using the BOC is given by

I TO= (T A+ 2n(n+2) TDI ] I0, (8)I
where T A I is the time required to solve the system of linear equations

5 by the analog processor and I 0 is the number of iteration required in

refining the solution of the system of linear equations using the BOC.

For a clear advantage in speed for the BOC over the digital computer we

3 need to satisfy the following condition.

3 TD )) T0, (9)

5S
1



I
ft or,

([ 7n 3/4 - 2n(n+2) Io1A o) (TD,tIl A ) 1. (10)I
Eq.(10) can be rewritten as

I ~ ~~AP * A, >1.(i

3 where Al=TD 1 AI and A =[7n 3/4-2n(n+2)I 0) / 0. (12)

T D1 and T A, are independent on the size of the matrix. For a rough

3 comparison

I T A: 2 wsec, (13)5 and

TDI: 1 sec, for a typical microcomputer and, (14)I
1 nsec, for a CRAY2. (15)

I If we substitute from Eqs. (13) and (15) into Eq. (11) the condition for

the advantage in speed for the BOC over the CRAY2 will beI
A p)) 2000 . (16)I

In Fig. 2 A pA I is plotted as a function of the size of the matrix n usin

T D I of the CRAY2 computer. It is clear that the BOC can have an

3 advantage of speed over the CRAY2 if the size of the matrix is in the

16
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I
i range of 50 or larger.. This advantage in speed increases by the

increase of the size of the matrix. Which makes this method very

3 attractive for such a class of problems.

I
IV CQNCLIAON

5 A new method for solving the eigenvalue problem using the bimodal

optical computer is presented. It is shown that for a well conditioned

3 matrix the solution for the eigenvalues and eigenvectors can be

achieved much more faster using the BOC than the existing

I supercomputers. This advantage in speed becomes very clear for large

3 size matrices.

g
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3 Fig.1 Block diagram for the bimodal optical computer (BOC)

for solving the system of linear equations Ax=b.3
3 Fig.2 The speed advantage A p A , for the BOC over the CRAY2

in solving the eigenvalue problem.
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ABSTRACT

Hardware and software design of the Bimodal Optical Computer (BOC) and its
implementations are presented. Experimental results of the BOC for solving a system of linear
equations AX = b is reported. The effect of calibration, the convergence reliability of the BOC,
and the convergence of problems with singular matrices are studied.

*I1 .INTRODUCTION

Analog optical systems are becoming very attractive in the area of signal processing because
of their ability to process in parallel two dimensional data very rapidly. However, analog optical
systems have low accuracy. BOC [1-4] solves this low accuracy problem, by using a combination
of both analog optical system and digital processor.

In this paper we present experimental results using BOC for solving systems of linear
equations. In Section 2 a comparison between astigmatic optics and waveguides based algebra
processors is presented. The hardware and the software design of BOC is in Section 3. Section 4
contains the experimental results of the BOC for solving a system of linear equations. The3 conclusions are in Section 5.

2.ASTIGMATIC OPTICS AND WAVEGUIDES BASED ALGEBRA PROCESSORS

I The analog optical system can be applied in many applications. This paper concentrates on
solving a system of linear equations. Goodman [5] has introduced an astigmatic processor to
perform matrix vector multiplications, which can also be used in a system of linear equations
solver. However, the main problem that faces the arrangement in Fig. 1 is aligning the
-omponents, to insure a uniform light distribution along the matrix plane.

Waveguides can be used to build optical algebra processors. By using waveguides, the
optical system can be made compact, and its alignment will be much easier than that of the
astigmatic system. The distribution of the light across the waveguide is plotted in Fig. 2, which
shows that the light is almost uniform along the waveguide. From the practical standpoint
waveguides are more reliable to use in these systems than the astigmatic optics.
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3.THE BOC DESIGN (HARDWARE AND SOFTWARE)

U 3.1 BOC HARDWARE DESIGN

The BOC hardware has three main parts as shown in Fig. 3. The optical system, the
electronic circuit, and the digital processor. The optical system consists of the fully parallel
matrix-vector multiplier. Light from the LED's representing .he - components are spread
vertically by planner waveguides onto the columns of the matrix mask. The transmitted light is
summed row wise by using another set of planner waveguides and detected by photodiodes which
represent the output vector b.

The electronic circuit acts as a feedback loop to correct for the input light of the LED's.
until a solution is reached. The solution x will then be read and stored by the digital processor.Fig. 4 shows the electronic circuit used for the feedback loop.

I The A/D and D/A conversion from and to the electronic circuit are performed by the digital

processor.

I 3.2 BOC SOFTWARE DESIGN

The BOC software controls the Input/Output operations. Both the matrix A and the output
vector b are read and stored by the digital processor. Tue vector lb is then converted to analog
voltage by a D/A converter, and it is assigned to the different ports of the electronic circuit. The
analog optical processor solves for an approximate solution due to its inaccuracy. The digital
processor reads and stores the approximate solution, V through the A/D converter, then it
calculates the residue vector, 1, as,

I (I)

Multiply Eq. (1) by a scalar s to make use of the whole dynamic range of the system, so
Eq.(l) becomes,

I sr=A(aft) (2)

If the residue is not small enough, the system of linear Eq.(2) will be solved for Ax using the
I analog optical processor and,

X1=o+ (3)

A new residue will be found for Z1. The iteration process is continued by solving Eqs.(1)
through (3) until a satisfactory solution is reached.

4.EXPERIMENTAL RESULTS

In this section we present the experimenmal results for solving a system of linear equations
Ax=h using the BOC,where Ab, and g are all positive.

The Log of the error and that of the residue are plotted versus the number of iterations. The
error and the residue are defined as,

Error= II(x-_Xk )1/11-511 (4)3l
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Residue=Iltk 1 (5)
SWhere i1 1, is the Enclidean norm, x is the exact solution, _k is the ktk iteration solution,

and Lk is the k iteration residue.

Since we are dealing only with positive numbers in this paper, we used the absolute value of
r to solve Eq.(2), then we set:

L Z~nl) (n)+AZ (6)

when all the components of r are positive. And

N x(n+1l)=X(n)"- (7)

I if all the components of r are negative. We reject the iteration when the components of I have
different signs and take the previous one. By rejecting some iterations we are actually rejecting
some corrections. This procedure slows down the convergence process.

In all the experiments performed, the iteration process is stopped when a 16 bit accuracy is
reached. Fig. 5 shows that the BOC started with almost 30% error and it needed 6 iterations to
converge to 16 bit accuracy. In Fig. 6(a) BOC started with almost 110% error, and the number ofI iterations needed was 21. Fig. 6(b) shows the Log of the residue as a function of the number of
iterations. The fluctuations depicted by Figs. 6(al and (b) is due to the rejection method used in
the experiments.

I 4.1 EFFECT OF CALIBRATION

The analog optical system error is a major factor in the rate of convergence of the BOC. If
that error is reduced, then the convergence is r,.uch faster. In order to illustrate this, the same
problem has been solved twice with two different accuracies of the optical system. The analog
optical system's error in the first time was 50%, and it was 30% in the second time. Twenty oneI iterations were needed by BOC to converge to the 16 bit accuracy for the first case. For the
second case the number of iterations was reduced to 12. These results are plotted in Fig. 7.

4.2 RELIABILITY OF THE SYSTEM

I System reliability for convergence have been tested and verified by solving the same problem
several times, under different conditions. Results show that when the BOC is used, to solve a
problem several times, the convergence rate will not be exactly the same for all the cases.
However, the number of iterations needed by the BOC to converge to a certain accuracy is almostthe same. Fig. 8 shows three different paths of convergence for the same problem. The BOCneeded 13 iterations in the first run, 14 iterations in the second, and 11 in the third.

I 4.3 SOLUTION CONVERGENCE FOR THE SINGULAR MATRIX SYSTEM

Solving a system of linear equations with a singular matrix A is one of the problems thatcannot be solved using conventional digital computer techniques. Singular matrices have a
condition number equal to infinity, so their inverse does not exist, also they have infinite number
of solutions. However, the BOC can be used to solve such systems [6]. The BOC converges much3 faster when A is singular, because a nonsingular matrix will have a

I
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unique solution. Due to the infinite solutions that a singular matrix has, the BOC produces
different solution each time we try to solve the same problem again. Fig. 9 shows the BOC
convergence for a singular matrix.

3 5.CONCLUSIONS

The BOC system was built and experimentally tested. The experimental results show great
reliability of the processor in solving systems of linear equations. Overall 16 bit accuracy of the
hybrid system was achieved with an analog optical system of 30% to 50% error. Higher accuracies
of the solution can be obtained by increasing the number of iterations. The BOC also
demonstrated to solve systems of linear equations with singular matrices.

I We are considering in fu.ure work, bipolar numbers, complex numhers, and using SLM for

the matrix mask.
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U APPENDIX B

3 MASSIVE HOLOGRAPHIC INTERCONNECTION

The basic concept was described in late 1987 (Appl. Opt.
II 26, 4039). An extension soon followed (Lasers & Optronics,

1989). This, in turn, was followed by a detailed analysis of our3 concept and 1988 reinventions of it in the U.S., England, and
Korea (Appl. Opt. 28, 311). A book chapter on this subject is

* now under preparation.
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3 Reprinted from Applied Optics, Vol. 26, page 4039, October 1, 1987
Copyright © 1987 by the Optical Society of America and reprinted by permission of the copyright owner.
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Parallel N4 weighted optical Interconnections SUBHLOGRI OF T,, BEV SPLITTER

H. John Cmulfleld VU ARR:Pu .AY

University of Alabama in Huntsville, Center for Applied Ile
Optics, Huntsville, Alabama 35899. REcONSrUcrIf /0 KR HOLOG FCT
Received 16 April 1987. BEAM ARRAY I0003-6935/87/194039-02$02.00/0. xNX OUTPUT DATA FIELD LNS

© 1987 Optical Society of America ARRAY B B -

While full optical interconnects of an N X N input signal POSITION OF

array to an N X N output signal array through N 4 weighted F
interconnects is an important goal for optical artificial neural Figure . Coninguration of a parallel optical interconnection be-
systems (ANSs), methods for doing this are rare. Goodman N array of holograpms each containing and N N mask array is
et al.' fully connected an N X 1 array to a I X N array. illuminated in parallel to produce the N4 interconnection.
Sawchuk 2 has suggested a fixed N 4 interconnection method
using replicated holograms for optical cellular logic. This
works in principle but has extreme space-bandwidth re- and detector array may be of different sizes. This requires
quirements for large N. Sawchuk has described a 3-D dy- relay lenses to magnify or demagnify one or more of these tonamic interconnection network for interconnecting 2-D N X achieve the Fig. I configuration or some simple variant of it.N arrays in parallel computing, but this network does not For example, the hologram array may be quite large. As-

have arbitrarily variable weights. 3 I hope to show a simple suming a 2-mm diam hologram to store a 1000 X 1000 T,
optical N 4 interconnection method which uses only one non- mask, we need a 2- x 2-m hologram array to store 101'
critical lens, an N X N reflective spatial light modulator and weights. This certainly precludes some uses. A 500 Xa beam splitter as components. 500T, mask needs a 1-mm hologram, and we only need a 50-

It is convenient to think of the N X N input array as a X 50-cm array to store (500)4 = 67.25 X 1010 weights. Fresnel
matrix A with components aki. Likewise the output is an N diffraction considerations mak- it desirable to keep the holo-
x N array B with components bij. These are interconnected grams larger than or equal to - mm. Thus if we drop to a
by a 4-D tensor T, i.e., 128 X 128T,, we need a 12.8- X 12.8-cm array to store the

(128) 4 = (271)4 - 2X8 x 2.5 X 108 weights.
B- TA. (1) To record each subhologram we must reverse Fig. 1. A

Equivalently, point source at the i, j position in the B plane illuminates the
SLM. The T,, pattern is written onto the SLM. A coherent

b () reference beam conjugate to the Fig. 1 reconstructing beambi, " T (2) allows the subhologram to be recorded.
Optical parallel N 4 interconnections are seen to be quite

Let us donote oy T,, the N X N array of T,kI elements straightforward. No technology breakthroughs are required
arringed in the same way as the ak. elements. That is, the to achieve N = 103 or N1 - 1012. Recording the master
tensor T can be thought of as N2 different N x N weight hologram as a whole or in parts may prove slow, but mass-
arrays of the form T,j, where T,, is an N X N array of T produced copies can be made quickly and inexpensively.
elements needed for Eq. (2). Dropping the subscript kI from
Tj,A, to T, is done for clarity in the following. This work was sponsored primarily by the Department of

Figure I shows the basic scheme. The A matrix is inserted the Navy under contract N00014-86-K-0591.
at the right side into the optical system via a reflective spatial
light modulator (SLM). An N X N hologram array (which ReerencS
may be so large that it needs to be demagnified by relay 1. J. W. Goodman, A. R. Dim, and L. M. Woody. "Fully Parallel,
optics before use as shown in Fig. 1) is illuminated by a High-Speed Incoherent Optical Method for Performing Discrete
reconstruction beam and provides the N'2T,, arrays. In Fig. Fourier Transforms," Opt. Lett. 2, 1 (1978).
1, we see that the T, arriving at the reflective SLM are N 2  2. B. K. Jenkins and A. A. Sawchuk. "Optical Cellular Logic Proces-products of the form T,kjakj. These are collected in the B3 sors." J. Opt. Soc. Am. A 2(13). P26 (1985).
plane (the image of the hologram array). 3. A. A. Sawchuk, "3-D Optical Interconnection Networks," in Pro-

In practice it may be necessary to make minor modifica- ceedings, Fourteenth Congress of the International Commission
tions on the apparatus of Fig. 1. The hologram array, SLM, for Optics, 22-24 Aug. 1987. Quebec, Canada (to appear).
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A Breakthrough For Optical Neural Nets

N XN1 NxN NxM

Sho~loW SLM together as closely as I micrometer by th
next century. For 1012 connections, ch,
wires would have to be packed together it

Lens 00 00, a two-',mensioial array I x 1 meter, at.
I0 #'then rearranged somehow to form the/ interconnections, which. according to

Caulfield, would require wire lengths of

00 gaO1 meters or so. That leads to a 10-mltconductive mas with bothersome induc-

tance and crosstalk.
Furthermore, even if the conductivity

(weights) of all these wires could be set
I1 independently with no space, time, or cost

i Xt penalty, each wire must be connected to

an input and an output. When added to
the interconnections, this leaves 4 x 10l1

iff" we ~y On attachments to make. If 4,000 connectonsIT, (am L- a could be made every second, it would take
It seconds to complete the task, which
adds up to something over 25 millennia.

Fgwe L One rtllon weighted, parael intrconnecions for optical neaW-nt In a paper submitted to AppOid Optiks,
compadng tasks em be accomplished with the above dewign. Data input is achieved Caulfield suggests an optical method of
with an Nx N SLM Input array. Each element of the input array i combined with an accomplishing the same thing. The tech-
N x N weighted array from an N x N holographic array into an N x N output array. nique makes use of holographic technology

from the 1960s-page-oriented holo-
graphic memories. Figure I shows how

Since the advent of the laser, a quiet or "neural nets," form the foundation of it works.
struggle has been going on between optics a computer architecture designed to mmic To produce 10 " optical interconnections.
and electronics. For a century it seemed the human brain by forming millions, even input data is encoded onto a 103 x 10'
that Maxwedl's equations were the only trillions, of individual, parallel intercon- array in the form of a transmissive spatial
laws these two fields had in common. nections. As with neurons, all these inter- light modulator (SLM); although a reflec-
Now, however, diode lasers and thousands connections could be individually weighted tive SLM can also be used. Each element
of kilometers of fiberoptic cable are stag- and connected to an equal number of out- of the the SLM nput --ray can be assigned
ing a virtual takeover in telecommunica- puts. Such an architecture was developed a set of weighted alues by means of a
tions, erasable optical disks are edging in large holographic i-ray.
on conventional magnetic storage, and The holographic. srray is 10' holograms
even the haowed hallsof electronic com- "I think what we're seeing high and 10' holograms wide. Each of

eputers are being infiltrated by new opto- is the real birth of the elemental holograms in this array is
elemuonic techniques. made in such a way as to produce a

The latest optoldectronic coup is being optical computing." 103 10x pattern onto the 10' x 103 SLM
staged by H.J. Caulfield, director of the input array. So the holographic array
Center for Applied Optics at the Univer- responsible for assigning the weighted
sity of Alabama in Huntsville. Caulfield by Warren McCulloch as long ago as the interconnections can be thought of as Nz

has put forth an "existence proof" that mid 1920s, but has only recently been different N x N weight arrays, and can
he says shows, "that there is a vital task studied as a possible solution to highly be represented by a four-dimensional
in computing that optics can do now and complex, repetitive computing problems tensor T, kl.

electronics can never do." What's more, requiring high-speed solutions, such as When the weighted arrays of holograms
he says it can be done with technology that pattern recognition. are reconstructed with a reference beam
has been around for twenty year. If true, Caulfield used reductio ad absurdum to and imaged onto the 10' x 10 SLM input
this is the breakthrough that optical com- prove the futility of making 102 parallel, array, a 10' x 10' output array, B, is pro-
puting has been waiting for. As Caulfield weighted interconnections electronically. duced. B - TA and has elements
puts it, "I think what we're seeing is the He explained that since electrons inter-
real birth of optical computing." act with one another, the connectionsT,a.

In an interview with LO on August 19. would all have to be made with individual
Caulfield revealed that optical techniques "wires" or electron carriers. Submicron A 2 x 2-meter holographic array consist-
offer the only possible solution to the carriers an silicon chips have just become ins of (0)a holograms, with each 2-mm-
massive, parallel, weighted interconnec- possible, so it is not inconceivable that diameter hologram stonng a 10' x 10'
tions of neural networks. Neural networks, such carriers could be made and packed weight array, would yield 10 12 weighted

22 LASERS & OPTRONICS
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3 NEWS
interconnections when combined with the Can Superconductors copper oxide, the best-known member of

3x 1 SLM input arry. the family of new materials that are super-
it is impossible to fathom the effects this Replace Fiberoptics? conducting at temperatures of 90 or 100development will have on optical neural- Could the new high-temperature super- Kelvin. Both passed picosecond-domain

net design, but Caulfield has managed to conductors provide much greater trans- ectrical pulses through 5-mm lengths of
combine mindboggling complexity with mission bandwidth than fiberoptics for superconducting film and could detect no
stupefying simplicity. He suspects that the long-distance communications? The recent pulse distortion or dispersion over that
most time-consuming part of his optical demonstration that such materials can scale. Both involved researchers well
neural-net design will be learning how to transmit picosecond pulses has some ob- known for their work on ultrashort opti-
weight the input array for each optical cal pulses.computing task. This, he believes, could However, the two experiments differ intake months to years and require the learn- The experiments are clear detail, and the two groups differ radically

ing capacities of traditional electronic in how far they are willing to extrapolate
computers. Once a master weight array is indication of high potential the results. Gerard Mourou. director of the
produced, however, neural-net operation ultrafast science center at Rochester's
time should be in the realm of millisec andwidt for the new Laboratory for Laser Energetics, pre-
onds, and successfully "programmed" superconductors. dicted, "over distances of miles, lossless
master holograms could be cloned in sec- superconducting transmission lines with
onds for mass production. 100 times the capacity of optical fiber

"The role of electronics, with its great servers beiieving so. However, others are systems could be developed." Much more
flexibility and accuracy, is learning. The more cautious, ncting that the two key cautious was Alex Malozemoff, research
role of optics is doing what electronics experiments sent picosecond pulses through division coordinator for superconductivity
learns," says Caulfield. "Brains use the only five-millimeter lengths of thin-film at IBM, who said. "I don't think we'vesame equipment for both tasks, but why superconductor, yet tested the superconductors in a regime
should we? We should let optics and elec- The two experiments were announced to talk about long-distance trammission."
tronics do what each does uniquely well. nearly simultaneously. One was by a .eam The thin-film superconductor used in
The war between optics and electronics is from the University of Rochester and the Rochester-Cornell experiments was
a foolish one. They each have a major Cornell University, the other by a team at deposited on a zirconium-oxide substrate
role. What we have done is [to) show, in the IBM T. J. Watson Research Center in by Robert Buhrman, professor of applied
one vital area, what those roles are." Yorktown Heights, N.Y. Both were work- and engineering physics at Cornell. The

-Tom Higgins ing with thin films of yttrium barium submicrometer film was etched to form a
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Reprinted from Applied Optics, Vol. 28, page 311, January 15. 1989
Copyright @ 1988 by the Optical Society of America and reprinted by permission of the copyright owner.

Massive holographic interconnection networks and
*their limitations

Joseph Shamir, H. John Caulfield, and R. Barry Johnson

Fundamental and practical limitations to be encountered in the implementation of massive free space optical
interconnects are discussed in detail, and some improved architectures are proposed. The long term
optimum design uses currently unavailable large arrays of laser diodes. An interim solution, using available

spatial light modulators, is shown to be capable of storing -1010 bits of information and performing -10"1
interconnectios/s.

I. Inroduction ization of an actual physical system. The analysis is

There is an increasing interest in massive optical based initially on a recently proposed architecture,7

interconnection networks for incorporation in commu- and two additional configurations are introduced with

nication and signal processing systems.'- Opticalar- an attempt to overcome some of the difficulties. Al-

chitectures are particularly attractive for the imple- though we treat here a very specific application, the

mentation of interconnection networks with extremely results are relevant to a considerable variety of other
high complexity that ate impractical with convention- optical processing architectures that have been pro-

al electronic systems. Neural networks7 -22 that are posed in the past or will be proposed in the future.
based on massive weighted interconnections are good In the next two sections, we describe the anticipated
examples of such systems. Many of the architectures performance of an ideal system disregarding all con-
considered in the above-mentioned references employ straints that will be analyzed in Secs. IV-VII in detail.

the extensive interconnectivity available in free space Part of this analysis is based on a more exact mathe-
propagation of light waves Only a few of these publi- matical description of the whole process given in Ap-
cations have, however, seriously discussed the actual pendix A for a scalar paraxial approximation. For
feasibility of large scale implementation. 2. 10 11 A more most parts of the analysis we assume that the system
common attitude is the description of a system archi- must perform all possible interconnections among all
tecture witi, a statement on the expected performance. the channels available and base the calculations on
Sometimes a demonstration is presented with a small worst case conditions. It is to be expected that if these
array of input data, but, in many cases, the limitations worst case conditions are replaced by some statistical
imposed on the upscaling possibilities are ignored, average, the derived constraints may be appreciably

Several limitations stem from fundamental physical relaxed. Furthermore, in many applications one does
processes such as diffraction and coherence, while oth- not need all the possible interconnections, and then
ers are due to technical difficulties such as the angular the system may be divided into subapertures In that
dependence of spatial light modulators (SLMs) and case our estimated constraints relate to the largest
the actual shift variance of real spatial filters.2 subaperture and the complete system may become

The main objectives of this work are the analysis of much larger.
the degradation factors that limit the performance of Two new architectures are introduced in Sec. VIII
practical interconnection networks and the derivation with an attempt to reduce the constraints derived for
of fundamental and technical constraints on the real- the original architecture. In Sec. IX we perform a

general analysis for the derivation of the laser power
requirements, and in Sec. X a detailed caE- study is
given with the derivation of design parame~ers for an
actual system that may be implemented in practice
with presently available devices. This system consists

The authors are with University of Alabama in Huntsville, Center of 256 X 256 input and output arrays with 2564 weight-
for Applied Optics, Huntsville, Alabama 35899. ed interconnections capable of performing 101 inter-

Received 2 March 1988. connections/s. Important concluding remarks, relat-
0003-6935/89/020311-14302.00/0. ed to the actual implementation of an interconnection
0 1989 Optical Society of America. network, are given in Sec. XI.
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II. Ideal Peworrnce ot Bask Archite~ire R S sLM

The basic configuation, sonin Fig. 1,is the trans-
missive version of the reflective system described in ,

Ref. 7. It consists of a hologram array of linear dimen-sions H containing Nh X Nh holographic optical ele-

ments, an SLM of size S with N, X N, pixels sand- L, Lz
wiched between two lenses with respective focal , L

lengths fi and f2, and a detector array D with Nd x Nd
detector elements. The ijth hologram in the array is Fig. 1. Basic configuration for an N' interconnection network: H.

imaged by the double-lens configuration onto the ijth hologram array illuminated by a reconstruction beam R: SLNM. spa-

element of the detector array. This hologram diffracts tial light modulator between two lenses L, and L 2 with their respec-

light from a reconstruction beam with an efficiency t,,kt tive focal lengths f, and f2; D. detector array or an array of nonlinear

toward the klth pixel in the SLM. The same pixel optical devices.

receives a weighted fraction of the light diffracted also
from all other holograms, but, assuming a linear inter- computerized robotic arm. To record the ijth holo-
action in the SLM, these are separated again on arrival gram this source is positioned at the location of the ijth
at the detector array. Thus, ideally, each detector detector pixel, oriented for optimal illumination of the
receives the sum of all the weighted beams just from a SLM, and imaged onto the hologram by the two lenses.
single hologram element. Mathematically, if the pow- The SLM, sandwiched between the lenses, writes the
er transmittance of the klth pixel in the SLM is aki, the desired interconnection pattern. This special lens
total power received by the ijth detector will be configuration is useful to keep all incident ray angles

on the SLM constant for a given hologram allowing for
b,' t,,jaak, (I) adjustments to take care of the angular variation of the

q1 ,SLM transmission characteristics. The constraints
where, for the time being, coherence effects have been related to the operation of SLMs are discussed in more
ignored. detail later. To attain small repeatable high quality

Performance degradation due to coherence is just holograms, a random phase plate over the SLM may be
one of the factors that is discussed later along with usefu 24 as discussed further in Sec. VI. The overall
some other effects that limit the scale- up capability of process of recording and reconstruction is mathemati-
this and many other architectures. This system in its cally evaluated in Appendix A within the paraxial ap-
ideal form may be viewed either as a matrix-matrix proximation for an ideal case using operator nota-
multiplier of a 4-D matrix by a 2-D matrix or as a tion.25-27

vector-matrix multiplier with vectors of N, x N di- In the above recording configuration it was assumed
mensions, that an oblique reference beam, conjugate to the one

S-.indicated on the figure, is incident on the hologram.
T -B. 2) Alternatively, one may use a point source reference

The elements of the input vector (or matrix) are situated on the optical axis at the SLM plane. This
introduced by the transmittance of the SLM pixels will allow an axial reconstruction beam resulting in a
with the hologram providing the fixed matrix 'ITI1. reduced bandwidth requirement for the holograms
The output vector is read out from the detector array. and a simpler reconstruction configuration. The pen-

Alternatively, we may consider this an interconn c- alty for these benefits is removal of the central portion
tion network with ,V, channels that are interconnected of the SLM and the introduction of aberrations in-
by IV X Nh weighted interconnections that are hard- duced by spherical-wave recording and reconstruction.
wired for a given hologram array. Semiquantitative Constraint Estimation
III. Hologram Recordkig The exact analysis of the physical processes involved

To implement the above aichitecture one must also in the operation of the proposed architecture is quite
devise a system for recording the required large holo- complicated and outside the scope of this work. Nev-
gram array. Within the present state of art the oracti- ertheless an appreciable insight can be obtained by
cality of computer generation with electron-beam evaluating the diffraction effects in the scalar 1-.raxial

I writing appears to be out of the question for these large approximation. In Appendix A we present a Fourier
arrays. Thus one must resort to optical recording, optics description of the complete process starting
preferably with computer assistance.1.0.1 Several pro- from the hologram recording stage and ending at the
cedures may be envisioned for the implemen iation of det!Ation of the output vector. Keeping in mind the
the hologram recording process. The most obvious of results in the Appendices, in the present section we use
these processes is based on the same optical 3ystem as a somewhat different approach that allows us to take
the interconnection network itself (Fig. 1) where each into account in a semiquantitative way effects induced
element of the detector array is replaced one at a time by off-axis propagation.
by a point source. A useful realization of this point To obtain an estimate on the limitations imposed on
source may be the endface of a single-mode optical the system of Fig. 1 we consider first the diffraction
fiber that can be easily positioned and aligned with a effects occurring while light is propagated from each

312 APPLIED OPTICS / Vol. 28. No. 2 / 15 January 1989
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hologram in the array toward the various pixels of the
SLM. For proper performance we must require that
most of the light addressing a pixel in the SLM should
be incident on this pixel, and only a negligible fraction
will be spilled over to other pixels. ,

We denote the linear dimensions of the respective
pixel sizes in the hologram array, the SLM and the x
detector array by Ph, p,, and Pd, and the respective
center-to-center distances of the pixels by dh, d,, and
dd. As discussed later, the center-to-center distances o - .
are not necessarily equal to pixel sizes. With the pa- a Mal
rameters defined earlier we have the relations

H f.= S/d,; V, - Hidh; N -= D/dd. Fig. 2. Definition of geometrical parameters: H. hologram plane:

If we assume diffraction-limited performance with cir- S, SLM plane or the detector plane in the modified architecture: r,
cular hologram elements, we may require that d. be not distance between the ijth hologram and klth SLM pixel. Polariza-
smaller than the diameter of the first Airy disk ob- tion vectors P and Pas well as the angle a.. and propagation vector

tained by focusing an aperture, the size of the holo- k are discussed later.

gram, onto the SLM plane. That diameter is
2r In its present form one may interpret it as a limitationa" 2.44 Ph) of the ratio H/ph for a given SLM (that is. a given value

of d,) operating at a given wavelength. From thewhere r = f/cosO is the distance between the ijth holo- optical designer's point of view, 8,. is determined bygram and the klth SLM pixel (see Fig. 2). We also the numerical aperture of the optical system. Howev-must consider the elongation of the spot due to the er, as shown in later sections, additional constraints
inclination of the beams incident on the surface of the should be considered. As a demonstrative example to
SLM. In principle we should also consider the cos 40 the meaning of relation (8) we assume the unlikely
flux density falloff, but we assume that this may be angular limitation 6,, = 450 (corresponding to an
precompensated for during the hologram recording f/No. of 0.7) and take X = 0.5 gra, we need a pixel
stage by modifying the assigned weights. center-to-center distance, d, = 173 gin, to obtain aThe optical configuration with the hologram in the ratio H/ph <5 100. This means that in these conditions
focal plane of the lens ensures that all beams from a one is limited to a hologram array of.V X Nh = 100 x
single hologram are incident on the SLM approximate- 100 elements unless holograms.are allowed to overlaply at the angle at which the central pixel is addressed, spatially, or alternatively an appreciable amount ofThus from Fig. 2 it is evident that the maximal value of crosstalk is allowed. The number of elements in the
this angle O,. is obtained for the hologram situated at SLM, however, is not limited by relation (8), and if we
the corner of the array and is given by want to implement a system with input vectors of rank

t m. N, XN,= 1000 X 1000 we need an SLM with S = 17.3
" if, 

cm.
The limitations on the absolute size of the holograms

All beam spots for this marginal hologram will be elon- may be determined by considering the requirementsgated by a factor 1/cos0 ,. In calculating the distance for space-bandwidth product or rather a quantity that
r, larger angles should be also considered, but, to re- we shall call information content (IC). If the resolu-
duce the algebraic complexity, we take into account tion of the holographic material is 1/1 and it can record
only an average distance traveled by the various beams htograph i n te a ppr/iat a ue
emerging from this hologram keeping in mind that the g distinct gray levels, we obtain the approximate value
actual situation is worse. For this average distance we ICh ( )"g . I 9)
may put r - fi/cosO,,,. With all these considerations a
minimal requirement for pixel separation is given by If the SLM has a gray level capability of g, levels, its IC

d, P 2.44 f(6) is
Ph OS 20 .1C ma 0

Solving Eq. (5) for fA and substititing into Eq. (6), we which should satisfy the relation ICh IC, leading to
obtain

XHV_ 
9d ?' 2.44 (7)__2 pL >1N,Ph sin 2

- h
d, 3.45 H It should be noted here that, apart from material limi-
A - sin28,,, Ph (8) tations, I is also limited by the recording wavelength: a

holographic grating can never have its interference
This relation may be regarded as the constraint set by pattern with spatial frequency higher than 2/X, and in
the requirement of diffraction-limited performance. most recording configurations one has I> X. Continu-

15 January 1989 / Vol. 28, No. 2/ APPLIED OPTICS 313
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ing with our previous example with N. - 1000, taking 1  (I k 1). 131
ing .,w b:, tk ~I~+ -. L1 ±t 1)a*/the limiting value I - 0.5 Am, and assuming gh = g,, we 2 = )ja,,/ 2 -U obtain Ph 2t 500 Am. Usually we shall need at least

twice this value to incorporate the hologram carrier where we noted the dependence of the error terms on

frequency for off-axis reconstruction. If a random location and took into account the bias terms due to

phase modulator is attached to the SLM, as proposed the noise. Naturally these terms also depend on the

in Ref. 24, the IC, increases, which necessitates an even matrix and vector elements themselves. Thus the

larger hologram, above relation is essentially nonlinear in the matrix

This first-order estimation leads to severe limita- and vector components. Thus one may only estimate

tions on the number of elements that may be processed some maximal error values and possibly determine

in parallel using a single optical system. A more de- their statistical nature for a given situation.

tailed analysis is required to derive trade-offs applica- According to our design objectives, the dimensional-

ble to specific system design. For example, one may ity of the detector plane should be equal to the dimen-

consider partially overlapping of holograms to obtain a sionality of the hologram plane (that is, NVd = Vh al-

larger number of holograms while still satisfying the though not necessarily equal to N J). Since our optical

restriction on the ratio between hologram size and system is essentially an imaging system between the

array size [Eq. (8)]. One may also relax the crosstalk detector and hologram planes, we have the geometrical

L limitations that will influence relation (6). On the relations
other hand, we must consider the deteriorating contri- dd - d I,14)

bution of coherence effects, aberrations, scattered f
likgth, and performance limitations of SLMs. D 2

V. Croustak Cons4datlos /I

In the configuration of Fig. 1, crosstalk occurs on the In principle, we also have the relation
SLM plane and also on the detector plane. The light f2

from a single hologram is split into several beams of P f=,Ph' 16)
various intensity, each of which is ideally focused into a
separate pixel of the SLM. These beams are modulat- where p' is the image of ph over the detector plane.
ed by the SLM and then converge to a single-detector However, because the reconstructed wavefront over ph
element. The crosstalk on the SLM plane originates is the phase conjugate of the writing beam, the distri-

mainly from light injected into the klth pixel from bution within ph will be quite nonuniform. As a mat-
matrix elements tijki' addressed to different pixels with ter of fact, if ph is very large and the SLM has unit
k'l' 0 k1. As long as the interaction in the SLM is transmittance, the complete reconstructed wavefront
linear, the mixing of light from several holograms has will be concentrated into the region occupied by the
no effect at this plane but becomes important on the source during hologram w'riting. As is evident from
detector plane where light originating from one holo- th. paraxial calculatior kppendix A, if we have the
gram leaks through to unintended detector elements. SLM in place, accordir- £q. (A25), the power distri-

To consider crosstalk over the SLM plane, wedenote bution will approximately be (ignoring coherence ef-
by e, the power originating from a certain hologram fects to be discussed in the next section) that of a sinc -

that may be incident on a single pixel due to leakage function, the extent of which is determined by the
from other beams that are not supposed to contribute SLM pixel size. If the hologram has a finite size, this
to this pixel. One may state that the weight attributed distribution will be widened by a convolution contain-
to this element for a certain interconnection is in- • ing the window function as derived in Eq. (A27). If
creased by this value. However, since e. usually has a this window function is not too small, that is, it satisf: -s
statistical nature, we may consider it as the error as- a relation of the form (8), we may state that the cro,-
signed to the element of the interconnection matrix, talk over the detector plane is generally proportional
Thus, instead of having a well-determined weight mul- to the diffraction spot size of the SLM pixel over this
tiplying each SLM element, we must include some plane. Using considerations similar to those leading
average bias level E12 and write to Eq. (6), we may write for the power that spills over

!I the area of the detector pixel

2t (1D) 1i_2____ 17)

T' s error has several contributions that include dif- \ sin28,.

fraction, aberrations, inclination factors, scattered whe:e 6',, is the maximal angle in the detector plane.
light, and coherence effects. If we define this angle in a similar way to the definition

A similar effect may be observed on the detector of ems1 , we have here too a geometrical relation
plane where ideally the light emerging from each holo- f,
gram should be focused into a single pixel. Denoting tans,, T tane.. t is)

the contribution of light power from other holograms
by ed we obtain the value of the vector elements with The above discussion indicates that the crosstalk
error, term at the detector plane and, according to the discus-
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sion in the previous section, also the crosstalk term on !Pd
the SLM plane are both inversely proportional to the--
SLM pixel size. Thus, to minimize crosstalk due to El D 1
diffraction one would like to increase p, as much as __J
practically feasible. However, if we intend to limit the
SLM pixel size to its minimal value according to Eq. D I'-- F '
(6), we may substitute the equality relation of Eq. (8)
into Eq. (17) to obtain

pdp2f sin2,., 2d =+ (ddpf sin26~M. (19)El 1 E [

where we used Eq. (15). For the crosstalk over theD
SLM we may write a similar expression:

IO sif28. 1 ) (20) Fig. 3. Layout of detector array.' - d(p Ys- n8s(0

Multiplying the last two equations we may write % POWER

Fora r d( J XH)2 (21) "
(d p lsin29.. PO 0. - -O . ..

For relatively small angles we may also write with the Pd 1 5 ------
help of Eq. (18) (

" 2,d , sin28 / (

This relation is quite interesting as it indicates some
possibilities for improving system performance by in- 6
creasing the SLM and detector pixel sizes and the ratio
ftlf2. Unfortunately, these parameters cannot be ad-
justed independently, and they must be considered a
together in some optimization process.

To evaluate the order of magnitude of the crosstalk 3
errors we follow the analytical results of Appendix AI 2 -with some numerical calculations assuming rectangu-
lar pixels as shown in Fig. 3. To evaluate the crosstalk I 

'  
N

over the detector plane we may start from Eq. (A25) --'- " -

and keep in mind that a similar procedure applies also -- dd,
for the SLM plane. We may normalize the argument 2 3 4 5
of the sinc function to the value of its argument at its Fig. 4. Crosstalk percentage as a function of relative center-to-
first zero: center distance of detectors. Parameter is detector size relative to

,_f (23) central lobe o sinc function.
x°"2p, '(3

where a detector pixel size below the size of the central lobe, but there is an
appreciable crosstalk even for quite large separation.

Pd 2 , o - (24) The curves indicate that we do not gain much by
enlarging the detector elements much above 2x0. As-

covers the whole central lobe of the sinc function, It suming that this is a good choice for the dimension of
should be noted that this size is smaller than the one the active part of the detector (Pd = 2xo), we obtain aused in the previous estimations. calculated value for the crosstalk between two adja-

If we illuminate the detector array with such a sinc cent detectors of 3.5% if they touch each other (Pd =
function centered on a detector denoted by A in Fig. 3, dd). This value for dd is technically not feasible, and
the detected intensity will be the integrated square of we rather take dd - 4x0 with which we obtain a cross-
the sinc function over the area of each detector ele- talk of 0.74%. The crosstalk to a more distant pixel (D
ment. The curves in Fig. 4 are the calculated integrals in Fig. 3) with its center at 8x 0 is -0.18%, while the
over pixels situated relative to A as the ones denoted by value for the nearest diagonally positioned pixel (C in
B. The values are given as the percentage relative to Fig. 3) is only 0.075%. Assuming this arrangement we
the integral over pixel A as a function of the normalized observe a maximum of four pixels each contributing
pixel separation dd/pd for three normalized values of Pd 0.74%, four pixels contributing 0.075%, and four more
with the middle curve (Pd = 1) corresponding to the contributing -0.18%, each. Taking into account thevalue given by Eq. (24). As expected, the crosstalk smaller contributions from more distant pixels, a max-increases drastically if the interpixel distance drops imum estimated crosstalk value is -4%.
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As we have seen, due to the special structure of the with the wavenumber k = 2-,r/X), and here we just note
diffraction pattern from a rectangular aperture, the that the g and h factors are the amplitude transmit-
crosstalk between diagonally positioned pixels is about tances of the SLM pixels during the reconstruction
an order of magnitude smaller than between adjacent and hologram writing processes, respectively. For our
ones. Consequently, a checkerboard configuration discussion here the important factor in this expression
may be advantageous for some applications even if this is the linear phase factor
requires a fourfold reduction in the number of pixels. rdv )

Naturally, even in this case we cannot forget the sec- 9[-dm,/4 - exp L' (md,x + nd,yJ 1 27)
ond neighbors D that still contribute 0.18%, each lead-

ing to -1% combined contribution from the eight near- The power detected by the detector element is given
est pixels, by

The above last number for the fractional error ap-

pears quite affordable, but we may run into difficulties r"1
2 = ' gh.,,,g, h:,,

even with this quantity. In general, we may define a : 7n

quantity ff that gives the fractional leakage from one x g(d'f)(d',f) sinc-2(xpif.yp,.). ,j
pixel addressed by a single channel into a neighboring
one. If the maximum possible power arriving to the The terms in the double summation are the same for
detector from a single channel is 1, the crosstalk to a both s'immations. Therefore, the mixed terms occur
neighboring pixel will be Ief. If we have M such pixels twice with the sign of the linear phase inverted. Thus
around each other pixel (M = 8 in the above example), we may write
we obtain a maximum crosstalk from these pixels of (Xp, s,,,
MIf. Assuming that this contribution is the most I U'12 = sinfc2  f Xf
significant and we may neglect other contributions, we

shall obtain the maximal value of the crosstalk when X+"
all N' channels are addressed with full weight to all the X gMh,,, + I gh,.g, h.,
neighboring pixels: mn 'n<__

(led).. - MIJEf, (25) x co d ', d', f. 129)

which may become much larger than I even for small q. f
We shall return to this subject and discuss it further in This relation gives the power distribution over the
relation to the estimation of laser power requirements. detector plane for reconstruction with a single holo-

All the above considerations presume ideal perfor- gram having infinite size. To find the actual detector
mance and alignment. One essential technical factor signal we must integrate over its sensitive area p2
to treat is proper alignment. If we have a misaligned Then the first sum will correspond to Eq. (1) if we put
pixel it will be shifted on the curves of Fig. 4. For
example, according to the calculations with the above g t, ., a30)
configuration, the measured power for a pixel dis- and we are left with trn. disturbing interference terms
placed in one direction by 5% will be off by 1%. of the second summation. Due to the integration, the

Vi. Coheence Effects contribution of these interference terms is quite smallI Eexcept for the smallest phase factors contributed by
In Eq. (1) we assumed that the power contributed by nearly neighboring pixels. The worst case is a nearest

the different pixels in the SLM is combined incoher- neighbor such as rn = m',n = n' - 1. For this case we
B ently at a detector pixel. As is quite evident, this shall have to integrate over an expression of the form

assumption is incorrect since the holograms are illumi-
nated by coherent light and one must consider coher- sinc ,(xp,/Xf.yp,/'Xf)a + 3 cos d, 1x31)

ent superposition. To do this we have to e -. I e the (f)]
complete complex amplitude distribution a. ' le !.tec-
tor plane. As a first-order approximation fc. - co- where a and 3 are two constants determined by the
herence effects we ignore the crosstalk and start from input vector and interconnection strengths. Since in
an ideal infinite hologram, recorded by a point source the derivation of Eq. (26) we have already extracted
which results in the expression given by Eq. (A25). the shift operator from the amplitude distribution [Eq.
That relation gives, apart from a quadratic phase fac- (A22)], we assume here that the detector pixel is cen-
tor common to the whole detector plane, the complex tered at (x - 0,y - 0), where, according to the above
amplitude distribution over a single detector pixel due relation, the intensity is much higher than for the
to a single hologram. This relation is reproduced here incoherent superposition. The amount of this dis-
for convenience: crepancy, after integration, depends on detector pixelsize Pd, If we take this size to cover the region up to the

S(26 first zero of the sinc function as in Eq. (26), we obtain5= /f sanc(xp,/Vyp,/Xf). (26 the first zero of the interference at
The various parameters are explained in the Appendi- X -. \/ 32)

ces (we changed the dummy indices to avoid confusion d,
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which satisfies the relation x, < Pd/4, and we have at mask has a constant phase over each pixel this may
least one full oscillation period over the integration spread the information more evenly without contrib-
length. uting much to bandwidth requirements. A phase

The actual net effect will be a redistribution of the modulation of this kind may also reduce the uncertain-
power over the detector area without much effect on ties induced by coherent superposition over the vari-
the total power. As a matter of fact, for this special ous planes, although some precautions should be exer-
choice of parameters a larger fraction of the power is cised to avoid unnecessary distortions.
concentrated around the detector center, which tends
to reduce crosstalk. If we calculate the integrated VII. Polarization Effects and SLM Performance
power over the detector for this case we obtain 25% Most SLMs that are available today operate on themore power concentrated on the detector surface. polarization of light, and they are designed for nearHowever, considering the fact that the relation d, > ps normal incidence. If an SLM is to be employed with
is always satisfied, the coherent contribution is much light beams having variable angles of incidence, we are
less pronounced. Taking the parameters of the previ- faced with two major effects. The first effect concerns

, ous section, d, = 2p, the difference between coherent the angular dependence of the SLM performance it-
superposition and noncoherent superposition is only self, and the second effect is related to the polarization
0.2%. More distant pixels will contribute interference characteristics of nonplanar wavefronts.28 According
terms of higher spatial frequency, which tends to re- to some recent investigation, reflective magnetooptic
duce the uncertainty to a negligible amount. The SLMs may be designed with reduced angular depen-
uncertainty in the detected value is also increased by dence.29 However, most SLMs available today rely on
the fact that no prior knowledge is possible about the the transmission of light through a controlled birefrin-
relative magnitudes of the parameters a and 0. gent medium, such as a liquid crystal. This birefrin-

An additional error source due to coherent illumina- gent medium has a thickness d within which the opti-
tion comes from contamination and irregularities in cal path difference for the two polarization
the actual system. For example, a dust particle of components 1(8) changes with angle. If we assume the
cross-sectional area having a fraction 77 of a pixel area birefringent layer to function as a halfwave plate, we
may scatter light of that fraction very unevenly. Thus may write the relation
a fraction 7 of power may be removed from one pixel 1(0) - (n, - n)d (2N + 1)A/2. 133)
and injected into another. A 10-gm particle, common
to most laboratory environments, has an area of the where 1(0) is the optical path difference for normal
order of 0.3% of the SLM pixel area we derived in Sec. incidence, N is an integer giving the order of the wave-
IV. If we consider this fractional noise as a coherent plate, and nn, are the ordinary and extraordinary
amplitude noise, it may amount to -0.6% of local pow- indices, respectively. If a light beam is incident on the
er uncertainty. face of the SLM at an angle of incidence 8, then, taking

To complete this picture one must also consider the into account Snell's law, the optical path difference
fact that most contributions to the crosstalk error are changes to
coherent with the signals, and for accurate analysis Eq. .n, - n)d (I + ) 3(13) should be modified accordingly. (4)

For the sake of brevity we considered in detail only 1 -sin" 2 sin -
the coherence effects at the detector plane. We should 12 Ft.,

keep in mind, however, that similar effects occur also where we ignored the splitting of the two polarizationduring the hologram recording process and at the SLM components and took n as some average of n, and n.
during reconstructiou. Although we assume linear Assuming a relatively small angle, we may write the
interaction with the SLM, a redistribution of intensi- approximate relation
ties due to coherent superposition may contribute to ___
an increased uncertainty in the interconnection I(9) 2N+ + s 1
weights. As on the detector plane, where we investi- 2 \ 2n, /
gated the power redistribution due to the coherent this reiation means that we have introduced a phase
superposition of the contribution from different SLM error of the order of
pixels, on the SLM plane we have the same effect from
the coherent superposition of the contributions from o - (2N + 1)r i-. 136)different holograms. However, as mentioned earlier, 2n2
assuming linear interaction at the SLM this coherent This phase error approximately determines the value
superposition has no appreciable contribution to the of the field component emerging from the SLM medi-
error. um at the wrong polarization that will contribute a

Some deteriorating coherence effects may be re- fractional error in the power transmitted by the ana-
duced by adding a random phase mask24 to the SLM as lyzer of the order of
noted. If the spatial frequency of this phase mask is t sin" •
higher than lip,, this will increase the IC requirements sin 2  N + -3
of the hologram, and information will be lost unless the
hologram size is increased. If, however, the phase Polarization errors of this kind may become quite large
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for high-order waveplates, but it is rather small for
first-order plates (N = 0) provided the angle is not . .SLM.

Special SLM design for broader acceptance angle
may be helpful in reducing this effect. However, even i 2 .
with a reduced angular sensitivity of the SLM itself, , > 2 2 - -

polarizers must be employed in conjunction with them, j -

a,, least as long as they operate on the polarization state 0 D
of light. Thus we should consider the deterioration of
the performance of polarizers with a varying angle of "H N
incidence.2 8 We evaluate this degradation of perfor-
mance by first defining a polarization unit vector P F

that describes the polarization orientation of light Fig.5. Modified architecture with SLM S adjacent to the hologram

transmitted by a polarizer for a normally incident light array e. P is an optional high efficiency grating that may be

beam. Denoting the propagation direction of any inci- employed for tilting the reference bea
dent beam by a unit vector h, the transmitted beam
will have a polarization orientation along the unit vec-
tor,2 8  

Similar polarization effects play a role also during
- -(P) 38) the recording of a hologram. While the reference

S .- beam has a well-defined polarization the object beam

If we place now an analyzer with its polarizAtion vector is usually not a uniform plane wave. If we adjust the

P, following the polarizer, the transmitted field com- polarization of the reference beam to fit the polariza-

ponent et will be the projection of & on a similar vector, tion of part of the object wavefront, all beam compo-

9' determined by P' also according to Eq. (38). With nents incident on the hologram at different angles will

an incident beam of unit amplitude, the transmitted have a polarization error effecting the reconstruction

amplitude component will be beam diffraction efficiency into that direction.

e, = - - P-hi.p) P-(-p'l (39) VIII. Moded Architectures

V V
1  -I_ v - T) The most severe limitation in the original architec-

Evaluating this scalar product for crossed polarizers ture is due to diffraction crosstalk and the angular
(P _.L P) we obtain the fraction of field amplitude that constraints of the SLM. In a modified system. sug-
leaks through: gested also in Refs. 30 and 31, the SLM is attached to

(P'-) (p,4) the hologram array, and it is illuminated by a uniform
1e,I - ___ 140) reference beam (Fig. 5). Thus all the angular varia-

1 - T702 1- tP. )2 tions of light incident on the SLM are eliminated.
With our definition for the maximum inclination angle Furthermore, there is no longer a need for large lenses
[Eq. (5)1, one may show that the maximum value of the in the operating sy-'em, although they may be needed
scalar products in this equation is given by (see Fig. 2) for the hologram - -':'.rding stage.

sinO.u The system is operated here too by introducing theSP. - - P, - sina 14l) input vector ah, in the SLM. Each element of the
hologram array is illuminated by the reference beam

Considering the amplitude transmission of two through a corresponding pixel in the SLM, thus with a
crossed polarizers as given in Eq. (40), we may inter- reference beam-intensity proportional to aki. The
pret the square of this expression as the angle depen- klth hologram diffracts light toward the ijth detector
dent extinction ratio that attains its worst value for the in the array with an efficiency tkjj; this detector re-

maximal angle of incidence [Eq. (5)1: ceives from the klth hologram light with power propor-
24 tional to thak. The overall power detected bv this

lel.,-tan'a i42) detector element is the sum of all the contribi. ions4 (again ignoring coherence effects):
where the approximation applies for small angles that
do not always apply. This error is comparable to first- b. tl  ai,, (44)

order (N - 0) SLM power polarization error [Eq. (37)]
that for relatively small angles may be approximated This equation is of the same form as Eq. (1). which
by contains t,),, rather than tklij and will be identical to it

_1 2_in'_ if the new ,I T1 matrix is the transpose of the old one.
4n4 143) One possible procedure to record the hologram array

is similar to the original architecture and uses the same
If, for example, we take the large value 0m, - 450 as for system. This reinstalls some of the problems dis-
the estimations in Sec. IV, we obtain an extinction cussed earlier but which can be dealt with more effi-
ratio of the order of 1/9, even with an ideal SLM ciently since for every hologram recording, a single
combined with ideal polarizers, source is used.
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The main initiative for this architecture was the the detector plane equal to n X w0 . Each hologram in
reduction of the angular constraints on the SLM, and the hologram array diffracts light into .V' channels,
we have already seen that it also eliminates the need and we have NM such holograms (and, of course, also
for the lenses. It turns out that there are also addi- Nd - Nh2 detectors). Thus the maximum total dif-
tional advantages: The polarization effects were also fracted power we need at the detector plane will be
mainly related to the function of the SLM, and, there- given by

fore, they are absent here. Furthermore, there is no W 2

crosstalk on the SLM plane since it is practically in wd = ,n,. 46)

contact with the hologram. Thus in this architecture Denoting by 77 an overall efficiency of the reconstruc-
the only crosstalk (with an ideal SLM having infinite tion process (including hologram diffraction efficien-
extinction ratio) is on the detector plane and is deter- cy, useful hologram area, SLM, and detector cross-
mined by the diffraction spot size of the hologram and sections as well as other losses in the system), we arrive
will satisfy the relation at a laser power of

d (45 , 1Pdh
and also by coherence effects and aberrations. This power requirement may be very high although

The pixel size of the SLM is virtually unlimited for affordable. It turns out, however, that we really do not
this architecture since each pixel serves only as the need such high power levels since this calculation as-
source of a reconstruction beam for a single hologram. sumes a detection dynamic range of NYhJV'n, which may
Small SLMs available today may be used with a projec- become also too high for any reasonable detector.
tion optical system to match its pixel size optically to Furthermore, if we take into account the unavoidable
that of the required hologram aperture. noise level given by Eq. (25), we may conclude that

The most obvious penalty for the benefits of this there is no sense in requiring a detection level which is
architecture is the reduced flexibility due to the re- lower than this noise. Thus, assuming that in Eq. (25)
quirement that there should be a one-to-one corre- we always have E > 1 for a realistic system, we may
spondence between the individual holograms and require a detection limit of only (d and decision levels
SLM pixels. Thus overlapping holograms are no long- also not closer than this value. Basing this realistic
er allowed, and also the same number of SLM pixels as approach on the considerations that lead to Eq. (25) we
holograms must be used unless one allows the illumi- may derive a new value for the laser power: We set the
nation of several holograms with a single SLM pixel or minimum detectable power equal to the maximum
vice versa. This state of affairs is useful for many crosstalk noise,
applications where the overall N 4 interconnections are
not required. = (d)a, - MM2, 148)

Coherent superposition at the detector plane still where I is the power received by the detector from a
takes place as with the original architecture, but here fully weighted channel. The maximum power re-
the superposition is from different holograms and not ceived by a single detector will be when all channels are
from different SLM pixels. To overcome this problem addressed to it, that is, .VI. Therefore, we may as-
an improved version of this architecture will be even- sume a worst case number of decision levels to be
tually possible with the development of large laser
diode arrays that may be able to replace the SLM. "TYi _.49_
The lasers in the array will be individually modulated (I )m, .A49
to represent the input vector. The number of decision levels multiplied by the detec-

This modification will lead to an appreciable reduc- tor sensitivity w. gives the maximum required power
tion in coherent noise since each hologram is illuminat- on the detector. For 2 such detectors and taking into
ed by a separate laser and each detector element re- on the or effic ec an th i to

ceives a single contribution from each hologram. Now account the overall efficiency, we obtain the total laser

the superposed beams on each detector element origi- power

nate from different lasers and may be combined inco- W,= - Y-.
herently (see also Appendix A). M •

The diode array configuration will be superior to the
various SLM configurations in speed, dynamic range,
and SNR. The only obvious problem is that such X. Design Conslerations
arrays are not available yet; however, present research Design parameters for an actual system are very
in this area should provide the needed devices in the strongly application dependent, and before attempt-
relatively near future. ing any design procedure one should answer several

questions: What is the dimension of the vectors to be
IX. Ilmlnaton Power ReUirements processed? What is the minimum acceptable number

To estimate the laser power requirements we denote of interconnection weight levels? What is the mini-
the minimum detectable power by w. If we allow n mum number of detection levels? What is an accept-
interconnection weight levels, we would ideally like to able error? Some of the answers to these questions
have a maximum power available in each channel at may turn out to be incompatible due to the limitations
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U derived in this paper, and compromises should be The power requirements can be estimated from Eq.
made. For example, we have seen that with an accep- (49). Taking the estimated ed = Me' - 4% and assum-
tance angle of 450 the extinction ratio of an SLM ing an overall light efficiency 7 = 0.1, we shall need a
system will be worse than 1:9, and crosstalk may be at laser power of 1.64 X i07 w,. With high sensitivity
least a few percent. This limits the number of weight detectors w0 - 10-9 W we need a laser power of -16
levels to -10. A smaller more realistic angle may mW, which implies that laser power is not a problem,
provide a larger number of weight levels, but then the and one may employ detectors of lower sensitivity
number of matrix elements is greatly reduced. when used in conjunction with higher power lasers.

As a case study we attempt to design a neural net- The required detector is also available. If we take
work with input and output vectors of 256 X 256 ele- the obvious detector size value dd = d' = 450 Um
ments. Several neural network algorithms use a leading to D - 450 X 2,6 - 11.52 cm we cannot use the
thresholded two-level output but with interconnection commercial CCD arrays, but we can use solar cells.
weights requiring a dynamic range as large as possible. vidicons, or image dissectors for detection and readout.

Hologram arrays of this size have already been im- To conclude this section we may safely state that
plemented, 0 11 and what remains for us here is to 2564 - 4.3 X 109 interconnections between 2562 = 6.55
determine their limitations. Taking in Eq. (11) 1 -1 X 104 channels with at least 10 weight levels, and
Am and g, = gh we obtain Ph -256 ,m as was actually twenty-five output levels are possible with presently
implemented (with the lower limit) in the above refer- available devices. Assuming a TV rate of 30 frames/s
ences. To accommodate also the off-axis carrier for we may perform 30 x 2564 - 1.3 x 1011 interconnec-
the hologram recording we need at least another factor tions/s. This number may be increased at least by 1
of 2 that leads to Ph - 500 Im. order of magnitude at the expense of the number of

If we use rectangular pixels, the various sizes will be weight levels (or just the decision levels in the modified
determined by the allowable crosstalk using calcula- architecture). With progress in the technology of
tions like those for the plots of Fig. 4. Taking an F/no. SLMs we may expect one more order of magnitude,
= 1 leads to 6,.. - 300. Considering the architecture and the limit is still greater once large and fast laser
of Fig. 1 with an SLM layout similar to Fig. 3 we may diode arrays are available.
attempt to choose a value d,/p, - 2 with p, matching Assuming a conservative number of 3-bit weight
the central lobe of the hologram diffraction pattern, levels leads to a total of IC that is stored in the holo-
Using the calculated results of Sec. VI, we obtain a gram array of 3 x 2564 - 1.3 x 1010 bits.
fractional crosstalk from a single neighboring pixel of
the order of ef - 0.75% and Mef - 4%. The polarization X. ConXlrooM
errors from relations (42) and (43) will be of the order We have shown in this work that it is possible to
of 4.5% assuming n - 1.5. The total uncertainty in the implement with existing devices a holographic weight-
weights is thus close to 10%, and there is not much ed interconnection network with 256 X 256 channels.
sense in requiring more than ten weight levels. The various constraints have been analyzed in detail,

Returning now to the analysis of Sec. IV we may and proper design parameters were evaluated. Before
modify relation (8) to implementing a working system, however, a few impor-

2,1H H tant remarks should be observed:
S 3.27 (51) In the estimation of constraints and errors we based

most of the calculations on worst case conditions.

For 256 pixels with nonoverlapping holograms we Therefore, we may expect actual performance levels to
need H/Ph - 256 leading to d,/X - 836. With X - 0.5 be much better than stated here because worst case
Mm we end up with d, - 418 1m. This value is larger parameter values are seldom encountered. Further-
than available in most SLMs, and we may overcome more, the appearance of all the worst case parameters
this difficulty by partially overlapping holograms: A together will be extremely rare.
value of Ph - 2dh bring us into a practical domain. We have described two architectures, and at this

To consider the crosstalk over the detector plane we point it is difficult to say which is preferred since
assume a detector layout similar to Fig. 3, keeping the preference appears to be application dependent.
condition of Eq. (51) with dd replacing d, and p, replac- While in the modified architecture one may definitely
ing Ph. In these conditions we obtain a maximum use a larger number of weight levels, in the first archi-

estimated error given by Eq. (25) to be -2562 X 4%1I tecture more channels may be incorporated due to the
26001 with I denoting the full weighted single-channel possibility of overlapping holograms.
interconnection power. At first sight this appears to In many applications one does not need all the possi-
be a formidable error, but it still constitutes just 4% of ble interconnections as in the human brain where only
the maximum power to be detected, and we may use a very small fraction of the total number of neurons are
twenty-five decision levels, actually interconnected. For cases like this one may

If we convert to the modified architectures of Fig. 5 arrange the channels in the array so that most of the
we may forget about the crosstalk over the SLM and its interconnections are made among nearby channels
angular dependence, although special precautions from the constraints point of view. Such a sectioning
should be taken during hologram recording. By Eq. of the array will allow a significant increase in the
(51) we can replace d, by dd and note that the detector overall array size since our constraints must be kept
error remains essentially the same. only within a single section.
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3 Finally, we should point out that in this application , -,1/X47l/]Q{(/fJI(dg]u(xy), (A4

the holographic reconstruction produces the complex where we defined
conjugate of the writing wavefront. Therefore, while we w dd
propagating through the optical system more phase 'd i + dd. A3D

distortions are compensated if they are the same as Using Eq. (B13) to commute the shift operator with
during hologram recording. This means that the opti- the quadratic phase we obtain
cal components do not have to be of the highest quali-
ty, although they must perform adequately well for the -,. [ 1  9[dd/f] Q (l/flu(x.). I A6)

hologram recording. The operation of the Fourier transform (FT) operator

Appendix A: Paraxial System AnalIysis is evaluated by using Eqs. (B15) and (B16) to yield

The purpose of this Appendix is evaluation of the q7, - [-xd]{d~/AtlYQ[1/(x~y.

performance of an ideal system to realize the limita- Operating with the scaling operator we obtain
tions introduced by fundamental physical processes.
We calculate the system transfer characteristics using , 1 9-d //7ofd]vfilA/73Q~/t (.y). '1i

I paraxial approximation and the operator notation If the source is an ideal point source, i.e., u(x,y)
which is summarized in Appendix B. We also assume 6(xy), the quadratic phase factor is eliminated by the
ideal SLM performance and hologram reconstruction. sifting theorem, and, recalling that the FT of a delta
To simplify the expressions we ignore constant phase function is unity, we obtain a displaced plane wave
and amplitude factors that will affect the signal and traveling at an angle defined by the position of the
noise in the same way; i.e., they are not important for point source:
this discussion. In any case, if these factors are need- U1, - g-d']. A9)
ed, they can be reinstalled by using simple physical
considerations. Naturally, the displacement of a plane wave has no

We start these Appendices from the hologram re- meaning. Thus we are left with a linear phase factor as
cording stage, which is the same for the original archi- it should be. The finite extent of the source intro-
tecture as well as for the modified architectures and duces an apodizing factor to the illumination of the
then discuss separately the three configurations. SLM plane. Thus the illumination of the SLM will

not be uniform, and this nonuniformity will be shifted
A. Hologram Recording according to source location. Usually the source will

For a discussion of the hologram recording stage we be approximately a Gaussian source, and the complex
return to Fig. 1 and the notations used in the main text. amplitude distribution over the SLM plane can be
We introduce a light source with complex amplitude predetermined and partially compensated for. Keep-
u(x,y) at the location of the ijth detector. Without ing this in mind we proceed with the assumption of an
losing generality we may simplify the notation by as- ideal point source.
suming f, - = f. The complex amplitude U, inci- Substitution into Eq. (A3) together with Eq. (B18)
dent on the SLM can be expressed in operator form by leads to'Ithe relation U,, -{/ ~/}h,(~){dl .A1,)i

L , - Q[-1l45qV1*[idd + jdj u(xy). (Al) Performing the FT operation we obtain

where we introduced the shift operator Y [Eq. (B5)] to U,1- Q~llf1/V][-d / f]H, - Q2llt1#[-d ]iii',f1H>.
represent the position of the source and denoted by I ( Al I
and 5 the unit vectors along x and y, respectively. The
input complex amplitude is operated on by AN[i], the where Hi, is the FT of hi,. If we need to reinstall the
free space propagation operator (FPO) (Eqs. (B7)- source distribution we should substitute here and in
(B9)] through a distance f and is finally multiplied by the following:
the quadratic phase factor 0[-1/ [Eq. (B1)], which is (1/Xf4H,1 - ((1l/fiH,). [9J-d//],[-]fi/ ,u(x,) f, Akithe transfer operator of an ideal thin lens [Eq. (B6)].
This distribution is multiplied by the SLM transfer where we used some operator algebra and the - dent
function specified for the ijth recording, convolution. The complex amplitude of Eq. (A 11 l

recorded as the iith hologram throuF in aperture orh,(Xy)- h,ltfkd,j + IdS] rect(z/p,,y/p,), (A2) more generally through some window function w(x.yv'

I 41 that apart from a limiting aperture may also include
where we again employed the shift operator to place a some apodization function. In most cases, however,
rectangular window function at the proper position of this window function will be of the form
each pixel. This SLM transfer function is again trans-
formed by the second lens propagated a distance f and w(xy) - rect -Al:0
finally recorded on the hologram at position ij as

11AW) It should be noted here that a reinstallation of the
U,, - R -I/h,,xyU, (A3) finite source size would contribute a convolution over

Returning to Eq. (Al) we substitute Eq. (B18) for the hologram plane tending to spread the flux and
the FPO and use Eq. (B8) to obtain reduce the information content of the system.
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B. Reconstruction and Operation-Original Architecture involved let us start with an unlimited hologram re-

The hologram array is reconstructed with the conju- cording, that is, w(x,y) = 1. To shorten the equations

gate of the reference beam. Thus, for each hologram, we define a new amplitude U by the relation

we reconstruct the complex conjugate of an expression U, - Q[t/49[d d I A22)
like Eq. (All) multiplied by the window function
w(x,y). The reconstructed beam is propagated Putting w(x,y) = 1 and performing the right-hand side

through a distance f, multiplied by the lens transfer FT operation in Eq. (A21) we obtain

function and then by a new function g(x,y), written on U' = / /Jg(x.y)hi(-x.-v. A23i
the SLM. This new function is the input vector to the
processing system. which essentially is the cross-correlation of the FT of

g(x,y) and h(x,y). With our special functions [Eqs.
g(g.y) 'gY[md,. +nd,] rect(x/p,,y/p,). (A4 (A2) and (A14)], however, it is easier to substitute

g' =dI them right away and observe that they are real and the

I rect function is symmetric. Both functions are com-
tudeis transformedultiplicatin by theY second thlens and propagatedampli- posed of the same rect function with terms shifted to

a distance f to the detector plane that will receive the various positions. Since the centers are spaced at

oefrom hologram distances that are multiples of d, that are never smaller
complex amplitude rthan the extent of the function itself p,, the only non-

, - RlflQ([-1/fg(xy)Q[-i1f1R9f] zero terms in the product of the two sums are those

X [d ]w(xy)l [-d'Ju(/XfIf, (AIS) having ki = inn. Furthermore, the square of the rect

1' wfunction is also the function itself; thus we may writeIwhere the complex conjugate of Eq. (All) has been jhkd'Jrcx_-i. A4substituted and modulated by the properly positioned U' fi [/xf .g, hk, [dp] rectxip,.y/pj. A241
window function. The overall field distribution on the A
detector plane will be the coherent summation from all where we introduced a position vector similar to Eq.
the holograms, (A5). Performing the Fourier transformations and

,= , (A16) the scaling operations lead to the final expression

Using Eq. (BI8) and then Eq. (B8) in Eq. (A15) leads to "= 9gk~h,,k9-d113/ sincxp,/Xf.ypI),n. AA25)

b = Q[1lf].1/fg(xy)[1/X](-d]w(xy)1/xf1,, In a real situation we should reinstall the source distri-

(A17) bution u(xy), which should be convolved with the sinc

r wfunction to obtain the final distribution.
where we took into account that the hologram plane is Some of the consequences of relation (A25) are dis-
the inverted image of the detector plane with unit cussed further in the main text while here we continue

Smagnification, that is, by returning to the complete expression that contains

~f~d~j = .'[-d ] (A18) the window function but assuming a source distribu-

and employed the definition of the shift operator [Eq. tion much smaller than the sinc distribution. If we do

(B6)]. Commuting the shift operator with the FT this, instead of Eq. (A23)we have

operator using Eqs. (B14) and (B16), we obtain U' [[1/gx.Y)w7Xfx..f'Y)H. ,A26)

- Q/ [/ gxyv/)xy) . If we consider only the right-hand side FT we are
(A19) essentially on the SLM plane, and we see that there the

distribution is given by a convolution of the FT of the
Moving now the linear phase factor more to the left window function with the interconnection function h.

we may write Thus this distribution is widened contributing to the

= [ crosstalk over the SLM plane. However, in the final

(A20) distribution, that may be written in the form

Now we may translate the right-hand side scaling op-

erator to the left and combine it with the middle one to where * denotes convolution. The window function
obtain actually reduces the crosstalk over the detector plane

(A21) since the width of H,) is cut by the window function
before performing the convolution operation with the

The overall process generated an extra quadratic FT of the input vector g.
phase factor that is not important for the detection
while the shift operator places the center of the distri- C. Reconstruction and Operation-Modified Architectures

bution at the proper pixel on the detector. The signal In the modified architectures (Fig. 5) the hologram
to be detected and the amount of crosstalk to be ex- recording process is similar to that of the original con-
pected are determined by the rest of the expression. figuration. Thus we may start here also from the
To analyze the various contributions of the functions reconstruction where now each hologram is multiplied
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directly by its input vector element. The complex Q(aI (Lk a\ Bi
amplitude is now propagated a distance f, multiplied 2exp- pi
by the lens transfer function, and detected on the
detector plane. The lens has no effect on our results with k 2ir/X, and p denoting the transversal coordi-
here, but it is useful in correcting for a quadratic phase nate
factor to reduce the variation in the angle of incidence P= Xi + Y51; p "Pl. B2)
over the detector plane. Denoting the complex ampli- L
tude of the light transmitted by the ijth element of the inear phase factor:
input vector by gij, it reconstructs the ijth hologram to as] = expijks .p). iB3)
generate the distribution over the detector plane given A scaling operator tfaj is defined by the relationship
by

U a -(alf(x,y) - f(ax.ay)v[a], i B4)

x [ (A28) and the Fourier transform operator is defined by the

where we introduced again the shifted window func- integral

tion that delineates the hologram (and now also the Wf(x,y) - f [(x',y') exp[2rj(xx' + yy')dx'dy']. tB5i

SLM pixel) size. Substituting Eq. (B18) for the FPO, The shift operator is defined by the equation
using Eq. (B8), and taking into account that gij is just a
constant and { [-d4]w(xy)J is a scalar function, we (ml(x.y) =f(x- 'vy- mn)'[m,. B61
obtain The transfer operator of an ideal thin lens of focal

I a* gj[-1/k17#'[-d ]w(x~z4/)q[1/Hl- (A29) length f is

Performing the scaling and FT operations leads to Lf f of-1/fl. i B7i

- g. [i/X7w(xy)I h,(-x,-y)1. WO3) Some basic relations are evident from the defini-
tions of the basic operators:I Taking into account that h is a real function, composed Q2a]2[b] - (2a + b], (B8)

of symmetric terms (the rect functions), we recon-
structed the original h function multiplied by the vec- Iav[b] - v[ab], B9
tor element gq, but each pixel distribution is now wid-
ened due to the convolution with the FT of the window v[alo[b] - Qa 2 bJfal, BI0

function. This convolution will cause a crosstalk by iBbl1mi a -[m/b}vfbJ, Bl1)
extending the distribution from each detector pixel
into adjacent pixels. To obtain the complete distribu- P[bg[ml - 9[mbJlib], i B12)

tion over the detector plane one must sum all the a 41m19[amJQ[aJ. B13)
contributions coherently,

I~ As stated above, constant factors have been ignored in
substi e '. (A31) some of these equations and also in the following.

A wUsing Fourier analysis we can show thatIf we substitute Eq. (A2) we obtain a relation similar

to Eq. (A25), but this time the linear phase factors b v[1/b, iB14)

originate from the hologram position. The advantage (S)
of the laser diode array architecture is that these phase
factors are canceled due to the incoherent superposi- h1'ml a .9-,mhl. 16B
tion, Free space propagation. i.e., the Fresnel-Kirchhoff

1U0I = 
,  (A32) integral, is described by the FPO, which can be ex-

pressed in various ways by the basic operators:

Appendix 8: Summary of Operator Algebra R[] - 'Q[) 2d17 _ jrQ[-X 2d1JY'. iB17)

In this Appendix we summarize the definitions and where d is the propagation distance. Another useful
relevant relations of the operator algebra. For sim- expression is

plicity we shall ignore all constant factors (phase and Rd] = Q[1/dlOd,QJ1/d, (B18
amplitude) that are irrelevant for the discussions in
this paper since we are intere9ted in the complex am- and for large distances an asymptotic expression may
plitude distributions and not their absolute be also employed:
tudes that can be estimated from simple consider- limR[d] = limv[1/),dJ. (B19)
ations. ---

Assuming for all operations a general complex func- The FPO satisfies the cascading property
tion f(x,y), we define the basic operators as follows.
Quadratic phase factor: :daIR[b] - R{a + b]. (B20)
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APPENDIX C

APPLICATIONS PAPERS

One of the early suggested applications of massive
parallelism was to cellular array processing (Opt. Eng. 25, 825).
This applies as well to symbolic substitution as practiced by Bell
Laboratories (Alan Huang) and to simple associative predictors
(Opt. Eng. 25, 1179).

3 Perhaps the most important SDI application is to massive
parallel optical data base management (SPIE 938, 52 and Appl.
Opt. 29, Vol. 2, 195). This is the fastest way to search gigabit
files.

5 Of course, these holographic memories can store templates
for pattern recognition (SPIE Z54, 74) or switching patterns for
binary optical devices (SPIE 769, 101) or generalized mapping
operations (SPIE 881, 56). The concept of stacked holograms
for this purpose also has some promise (SPIE 883, 203).

I
I

I
I
I
I
I



Systolic optical cellular array processors
I

H. John Caulfield, FELLOW SPIE Abstract. Using space-variant pattern recognition of up to 256 3 x 3 pat-
The Center for Applied Optics terns of I's and O's In parallel and Inserting image information
The University of Alabama in Huntsville sequentially In a well-defined pattern, we can construct an optical
Huntsville, Alabama 35899 systolic cellular array processor for 3 x 3 neighborhoods that produces

output points at one-third the rate at which points are input. This allows
reprogrammable preprocessing of data input.

3 Subject terms: Space Station optics; optical processing: cellular array pro-
cessors; optical computing; systolic arrays.

Optical Engineering 25(7). 825-827 (July 1986).

3
I

CONTENTS One task not being attacked is very rapid (relative to the
I I.Introduction frame time) nonlinear image preprocessing. We have in

2. Cellular array processors mind tasks such as skeletonization, median filtering, feature
3. General approach location, and noise removal. Such tasks are well suited to
4. Assessment modern cellular array processors, and the speeds of some of
3. Acknowledgment these are essentially fine for the task. On the other hand, if
6. References we wish to do many such operations in a frame time (a

strong likelihood in view of the iterative nature of many of
1. INTRODUCTION the algorithms), new technologies may be needed. Also, we
One of the announced goals of the would like flexibility to program the cellular array processor
Oof thcle annotfoue oeason of drepairi the pace o pto perform noniterative sequences of operations. Theseto include robots for operation and repair in the space en- tasks may be facilitated by an optical cellular array pro-
vironment. While not yet R2D2 clones, these robots must

I perform tasks well beyond the current state of the art. cessor.
Typical of such tasks is the tracking (six kinematic
parameters per object) of multiple (say, 0 to M) objects 2. CELLULAR ARRAY PROCESSORSi from a known set of N >_ M possible objects. The Cellular array processors are simply regular arrays of locally
background clutter is unpredictable. Occultations are prob- interconnected synchronous processors, or cells. There is a
able. Lighting will be nonuniform. Response times must be well-defined cycle time in which each cell receives informa-
very fast, say, TV frame tirme. tion from all its neighbors, performs its characteristic

Many "tricks" must be applied to make this happen. The calculation, and has its value replaced by a new value. Nor-
Ames Research Center is working on intelligent optical pat- mally, there is a one-to-one mapping of cells onto pixels.I
tern recognition and optical control processing.* The Jet We consider here only finite impulse response (FIR)
Propulsion Laboratory is developing rapid coherent optical operations, or neighborhood operations. 2 For this
data base search methods. t The Johnson Space Center is preliminary study we specialize to a very small but ser-
developing coherent optical pattern recognizers with in- viceable 3 x 3 neighborhood in a square array. Furthermore,
variances to various of the six kinematic parameters.t we specialize to a binary image. Removing both specializa-
Besides these internal NASA programs (this list is almost tions is possible but difficult enough to be a distraction in
certainly incomplete), programs must be developed outside this initial study. More general and complex optical cellular
NASA as well if optics is to play a powerful role in these array processors have been proposed by Tanida and
robots. A marriage of work in optical processing both inside Ichioka. 3.4 By specializing, we can simplify the design con-
and outside NASA will be required for these robots. siderably.

The approach we use is cell replacement. Rather than ex-
*D. Cliffone, private communication (1985). plain this method abstractly, we offer some trivial examples

tH. K. Liu, private communication (1985). that should make the generalization obvious.
Suppose we want to recognize the corners of all objects in

R. Juday and Michael Duff, private communications (1985). the scene. We can do this by replacing the central pixel in a

Invited Paper SS-105 received Jan. 9. 1986; accepted for puhlication March 3 Xn3 neighborhood by a I if the cell has any of the four pat-
28, 1986; received by Managing Editor March 31, 1986. terns shown in Fig. 1. All other patterns will produce a 0 in1986 Socie y of Pho t-op ica insrume aton En gneers. the center pixel. i
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3 1 1. 0 o 1 1 (1.1) (1,2) (.3)

1 1 0 0 1 1 (2,1) (2,2) (2,3)
0 00 00 0 (3,1) (3,2) (3,3).

We now show our proposed method for doing the above
0 1 1 1 1 0 neighborhood operations optically. We first map the 2-D
0 1 1 1 1 0 neighborhood into a I-D neighborhood in an appropriate

FIg. 1. 3 x 3 neighborhoods that lead to a I in the output for corner way. For (2,2)', the neighborhood is
recognition.

Now suppose we wish to use a median filter to smooth out (1,3)
noise without blurring "real edges." Then every 3 x 3 pat- (2,3)

I tern with five or more l's will lead to the center cell being (3,3)
replaced by a 1. All other patterns lead to a 0. (1,2)

Readers unfamiliar with these concepts might wish to "in-
vent" some "algorithms." For instance, a shift-right-one- (2,2)
cell substitution is easy to discover. (3,2)

(1,1)
(2,1)

3. GENERAL APPROACH 
(3,1)

There are "only" 29 = 312 possible patterns. All we need to For (2,3)', the neighborhood is
do is recognize at most 26 = 256 patterns-the worst case
being when I- and 0-yielding patterns are equal in number. (1,4)

If we use space-variant pattern recognition, i.e., if we
control where the pattern appears, the pattern recognition (2,4)
becomes trivial. (3,4)

On the other hand, only one pattern at a time can be in (1,3)

any particular location. This suggests that only one output (2,3)
pixel at a time can be generated. As we move the (3.3)
neighborhood from one pixel to the next in raster format,

I six of the nine pixels stay in the neighborhood, three drop (1,2)

out, and three are added. This suggests a pulsating flow pat- (2,2)
tern, in fact, a systolic array processor. (3,2).

Accordingly, we have designed an optical systolic array
processor for cellular array processing. Because the pro-
cessor is pipelined, it generates outputs at a rate propor- Note that moving from (2,2)' to (2,3)' involves moving the
tional to the input rate. A simple systolic cellular array pro- existing pixels down three positions and adding three new

i cessor of the type to be described can move data out at one- ones at the top. If a shift occurs in at, the pattern is
third of the data input rate. If the recognition occurs in LLLLLLLLRLLRLLRLLRLLR.... where L is the load
parallel (not unreasonable for 256 "channels"), the input is operation and R is the read operation. Flowing pulsating
the effective rate limiter. calculations in essentially identical local processing units

The rest of this paper shows one way of doing this. Many have come to be called "systolic."
other ways (some without pulsing, some doing multiple lines In the simplest case the data will be flowed in using an
at once, etc.) will occur to optics-oriented readers. The acousto-optic cell. For this purpose, we can envision an
method we show was chosen for didactic and constructive acousto-optic cell as a shift register of optical transmissions.
simplicity. That is, a set of optical transmission values of l's and O's

Let us label the cells as follows: can be inserted into the top of such a cell. They thereafter

(1,1) (1,2) ... (1,N) flow through the cell at a uniform speed.
(2,1) (2,2) ... (2,N) After the initial pipeline loading, an appropriate nine pix-

els are present to calculate a new image cell.
Let us use two side-by-side acousto-optic cells (in the same

material for convenience) to represent a neighborhood.

Thus, the 2-D and I-D mapping converts

Any size or shape of neighborhood can be defined.
I Somehow padding (pixels around the edges of images) must I 1 0

be defined to allow edge cells to be calculated. A sample I 1 0
neighborhood is the 3 x 3 cell. For instance, the "image" of 0 0 0
cell (2,2) [call it (2,2)1J depends on the pattern of l's and O's

I in the subarray. to
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I SYSTOLIC OPTICAL CELLULAR ARRAY PROCESSORS

5 0 rcEC!':Tf,
0
0 0 01

0

110 01
101 - 0 0..

0.01 1 0 =

Our new mapping converts this to 0 a 
0 1 MX SIGNAL - 9
0 0 1 T a 8,.57

0 11 0 Fig. 2. Sequence of transformation from a 3 x 3 binary array to a
unique 2 x 9 array of 9 "on" and 3 "off" cells that, when passed

1 0 through a matching mask, summed, and thresholded, uniquely
0 1 Identify the particular cell configuration.

1 0
1 0 B/3. For a frame of 500 x 500 pixels and a rational band-
0 1. width of 90 MHz this leads to 120 frames per second. More

An optical signal with light of a strength 0 or 1 in this pat- complex processors will go even faster.
I tern is easy to produce with a two-cell acousto-optic device.

Both l's and O's in the original cell are now represented as 5. ACKNOWLEDGMENT
light-on positions. This work was supported under contract N00014-85-K-0479,
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3 Optical interconnection based symbolic manipulations

I H. John CaulfIeld. FELLOW SE Abstract. Using arrays of optical bistable devices add1sssed and read out by
Center for Applied Optics arrays of holograms, we can make an optical symbolic computer that can learn
The University of Alabama in Huntsville languages, play games. invent stories, etc.

SHuntsville. Alabama 35899 Subject terms: optical interconnections.

Optical Engineering 25(10, 179-180 (October 19861.
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i CONTENTS ences between normal and. With (I) your knowledge of
I .Introduction the structure of the English language and (2) the context of
2. Joint context network that beginning, you have little difficulty in -predicting" that
3 2. Encoding the next word will be 'abnormal." Can we make an optical

4. Example case symbolic computer that can do the same? Confronted with a
5. Analysis new situation, can we generate an appropriate response based

m 6. References on past learning plus trained -insight"
A wonderfully readable book by J. H. Andrae, titled

1. INTRODUCTION Thinking with the Teachable Machine.9 gives the details of
While most attempts at optical computing have aimed at the context-driven approach we call JCN. I show here a
numerical processing1-S or numerically assisted reasoning.6-  simple example. Say my task is weather forecasting. I want
little effort seems to have been devoted to symbolic proccss- to know if today will be clear(C). rainy (R), or partly cloudy
ing. In particular, prior work on optical symbolic processors (P). The past few weeks have been CCCPPRRPCCI has aimed at drawing inferences from input data, stored data, CCCCRPCCPCCCCCCP. What should I predict next? For
and rules. This paper is intended to show that optical comput- N = 2 JCN, we learn
ers can do far more than that. In principle, they can be taught
to speak English, tell stories, play simple games, etc. The CC -> C (the first two symbols implied the third)I particular approach shown here is chosen because, of all the CC -- P
non-inference-drawing schemes I have discovered, it appears CP -> P
to be the simplest to implement optically. No claim to opti- PP -- R
mality in any sense is made; rather, I hope to draw some PR - R
attention to this heretofore largely neglected task for optical RR P
processors. RP -C

By symbols we mean what is meant in normal conversa-
tion: letters, words, numbers, events, concepts, etc. We C C
assume that these symbols can be listed, i.e., that they are
countable. This means that we could make a list of them and CC - C (a popular implication)
assign a number to each. Our object will be to produce mean- CC -- Ci ingful and useful strings of symbols: sentences, equations. CC -> C
reactions, etc. One of the good features sought is innovation. CC -> R
although we may wish to control its rate of production. CR - P

RP -C,

2. JOINT CONTEXT NETWORK (JCN) PC - c
The essence of the JCN is to remember, predict, or postulate CC -> P
the next symbol, given the previous N (as well as prior teach- CP -- C
ing) as the context. We will call N the context depth. PC - c

An example may prove helpful. I have just read an article
on speech recognition. A typical sentence begins: -The differ-

I Paper SC.61 12 received March 4. 196; accepted for publication July I.
1996. received by Manaipng Editor July 21. 1986.

1986 Society of Photo-Optical Instrumentation Engineers Our N = 2 context is CP. Bas.' I in prior observations, the two
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CAULFIELD

I coincidences. The transmitted light or (better) newly gener-
ated light from a bistable laser strikes another hologram,
which (a) gives the prediction or memory or b) giies the set or
weighted set of predictions or (c) sends data on to other
processor arrays.

C.1" A Cascading a number of these systems to use a depth greater

than 2 is straightforward.

4. EXAMPLE CASE

Suppose we want a 512 symbol N = 2 JCN. We postulate two
512 X 512 arrays of bistable lasers that emit only if struck with
light of power at least IT .Each symbol can be represented by

c,,2  C03 5  one of 512 A sources or one of 512 B sources. Each of these
A B1024 sources is followed by its own hologram, which directs

Iuniform vertical and horizontal light beams toward the A
f l j and B bistable laser arrays. The power on each illuminated

laser is less than IT/ 2. Thus, only at the intersection does a

H I laser beam arise. That laser beam, in turn, strikes its ownI hologram, which causes the light to predict or remember
something from the joint conjunction by illuminating one or

A Co3  B more of 512 detectors.

3 Fig.1 For contextN =2. we need two bistability arrays A and B). In Programming or teaching is embodied in the two 512 X 512

(a). we se concept 112 being entered as a column of light for one arrays of memory holograms. If the output (22 X 23 = 506 plus
panl(A). In(bl. conceptCo isentered on both. OeWat01ae4 ttCl 12 is an extra row of 6) is thejoint Fourier transform of both 2-DStlon. the threshold is ceeded at the ifsrsection. This accure only laser-hologram arrays, the programming holograms are simply
when C1 12 is followed by Co,1s. In (c), we have added concept C400. properly aligned and spaced gratings.
Because the Con light is still on, the interaction in S exceeds thresh-
old and indicates that concept Coag folowed by C~oo has just
occurred. Nolograims ilumimetd by light Pasing through thO $. ANALYSIS

* intersection points spread light across detectors or other bistable
paes if greater than depth 2 is required. This paper is intended to illustrate a new direction for optical

computing: symbolic processing. Optical parallelism makes
speed independent of the number of symbols processed,

3 possible predictions for the next observation are P and C. We although hardware complexity does increase. The JCN speed

can choose one at random or seek further context. The N = 3 can be made independent of N (the context depth) by prepar-
JCN also would predict P and C, so that is no help. An N = 4 ing some contexts while reading others. Again, the price is

I JCN would predict P; that may be our best bet. complexity.

3. ENCODING 6. REFERENCES

Since, by hypothesis, the symbols are countable, we can put 1. -Optial Computing. Special Issue of Proc. IEEE (July 194).
them in one-to-one correspondence (order unimportant) with 2. J. W. Goodman. A. R. Dias. and L. M. Woody. -Fully parallel. high-speed

the counting numbers I. 2, 3,. Suppose, for the moment, incoherent optical method for performing discrete Fourier transforms."
.... Opt. Lett. 2, 1-3 (1979).

that the number of symbols is small, say 512, and the JCN has 3. H. J. Caulfield, W. T. Rhodes, M. J. Foster. and S. Horvitz. 'Optical
a context of only N = 2. We use two 5 12 X 512 arrays of implementation of systolic army processing.- Opt. Commun. 40. 86-90optialbstabe dvics. Cll hem an B.(1911).
optical bistable devices. Call them A and B. 4. R. A. Athale and W. C. Collins. Optical matrix-matrix multiplier based on

Figure I shows how A and B are addressed if the symbol outer product decomposition." AppL. Opt. 21. 209-2090 (1912).

string is C1 12 c035 Cw. After the context C11 2 C 35 is established. 5. M. Carlotto and D. Casasent. "Microprocessor-basd fiber-optic iterative
• A c xoptical processor." Appl. Opt. 21. 147-152 (1912).

a unique intersection occurs in A. The context C0033 C,, is a 6. D. Psaltis and U. Farhat. 'Optical information processing based on an
unique intersection in B. The next intersection occurs in A, etc. asociative-memory model of neural nets with thresholding and feedback.'

Opt. Lett. 10.98-100 (1995).Thus odd-numbered (I st, 3rd .... ) concepts must be hori- 7. G. Eichmann and H. J. Caulfield.'Optical teaming(inference) machines."
zontal in A and vertical in B. while the reverse is true of AppL Opt. 24.2051(19"5).

even-numbered concepts. S. H. J. Caulfield. Optical inference machines." Opt. Commun. 55. 259
(1915).

To address a concept, we must know whether it is odd or 9 J. H. Andrac. Thinking with thr Teachabe .Vachn. Academic Press. New
even. We then either turn on a light beam or deflect a light York t 1972).
beam to the proper position. The beam then strikes a holo-
gram, which spreads it as required. Each beam is on for the
length of the context (two "read times" in this example). Each H. John Caulfield: BiographV and photograph appeared on p. 827 in the
beam has strength 1, and a threshold of around 1.5 detects July 198 issue.
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i Massively parnilol optical data basp annogement

H. J. Caulfield
University of Alahamn in Huntsville

Center for Applied Optics
Huntsville, Alabama 35899

Using Page Oriented Holographic Memories (POHMs) optically addressed Spatial Light Modulators (SLMs),
joint transform correlators, 2D or ID acousto-optlc cells, and optically addressable RAMs we can produce a
massively parallel optical data base management system.

I. IrNRODUCTION

Optical Data Base Management Systems (DBMS) operating with massive parallel read in from memory, query.
and read-out to electronics would offer huge advantages over the current bit-oriented or hoped-for byte-
oriented systems if

* the data base Is too massive for conventional DBMS systems.: the access time required Is too short for conventional DBMs systems, orI (preferably for optics) both.
When there Is need to search huge data bases very fast. we are sutomatically In the big system domain which
will not exclude fairly complex optical systems. Therefore, the objective of this work Is to explore mas-
sively parallel optical DBMS.

The key Ingredients are optical systems for
* massive parallel read into an optical system from a large data store,
" parallel query on the whole "page" In the optical system,
" parallel read out from the optical system to output electronics, and

" parallel "intelligent" control of the operation. All of these tasks can and probably should be per-
formed optically.

For brevity, we deal here only with the first two tasks. A separate paper will discuss the latter two.

I11. PARALLEL READ IN

Obtaining whole pages of data In parallel Is the domain of page oriented holographic memories or POIN
(1). Each page Is represented by Its own spatially discrete hologram on a large substrate. Storing a 256 x
256 page requires a roughly one millimeter hologram. We can store 10 of these on a l x Im substrate. The
holograms are accessed individually by deflecting a laser beam to the selected hologram. Whichever hologram
Is selected produces Its page at the same physical location. There It strikes an optically addressed
Spatial Light Modulator (SLM) which reads the full page into the optical system. This is shown in Figure 1.LAS&R
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I iv. PARA.LLEZ LQgUIY

The first step In parallel query is to restrict the field of regard to Items of interest. We may have
the data base arranged in columns such as£Ordinal g Family First Second I SsN

Number I Name I Nae I Name

Our task is to find all people with the second name "John" with 54 as the fourth and fifth number@ in
their Se6 (Social Security Number). Using an electronically addressed SL we illuminate only the columns
for second names and fourth and fifth numbers as shown In Figure 3.

I FULL
SLM 2
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The next step is to search for matches with

I -I JO H N ...54 .

3 We dn this by template matching in parallel using a Joint transform correlator as shown in Figure 3.
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3 ~v. RUDAU0 An CorL

We will only hint at these Items here. The selected rose output must be accumulated continuously on a
parallel read In RAN for subsequent use. Figure 4 shows the basic concept.

Control Is the mot difficult part If we wish to replace exhaustive search with heuristic search. In a
later paper we will sbow an adaptive optical neural network suitable for this purpose,

Io 20 AO

(Aseousteps CAl)k

Fig. 4. The 20AO el&Wtsm"umegeemum

"U"le hg ehamgim t&6 &PetUe ofI IgB& in t6m Few~ie pkam.
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I
The deflector addresses a single hologram from the POHM
which writes a page of data in parallel onto the output

laser beam.
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I SLM 1I
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LASER __,MIRROR5 BEAM

SLM A SECOND SLM (SU'Q, SHOW HERE AS

TRANSMISSIVE) IS USED FOR SELECTIvE
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I' LENS PLANE

SLM1 FT

LENS 1

WE CAN USE AN ELECTRONICALLY ADDRESSED SL±M
(SU) TO WRITE A REFERENCE PATTERN TO BE

MATCHED WITH THE LIGHT COMING FROM THEP3HM-oRivEN SUI (SU.I1). FOURIER TRANSFORM

LENS I JOINTLY TRANSFORMS BOTH OUTPUTS ONTO 43 SU4 WiERE THEY AMD COHERENTLY. ANOTHER

READOUT BEAM ADDRESSES SLM4 WHICH PRoDucEs

BRIGHT LIGHT ON THE OUTPUT PLANE WH4ERE THEREFERENCE PATTER IS MATCHED WITH A PORTION OF

THE iPUrT m (FROM SU11).

I
I Figure 8 PATTERN SELECTION
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I Optical database/knowledgebase machines

U P. Bruce Berra, Karl-Heinz Brenner, W. Thomas Cathey, H. John Caulfield, Sing H. Lee, and Harold Szu

In this paper we discuss various aspects of databases and knowledgebases and indicate how optics can play an
important role in the solution of many of the previously unsolved problems in this field.I

I. I '*odwuwsy systems are concerned with inferencing on the know-
I A database is a collection of interrelated data and ledgebase, as well as other functions. The most well-

during the past 10 years the word database has become known system of this variety is the expert system.
somewhat of a household word. This has occurred Current expert systems exist or are being constructed
because of the ever increasing use of databases and the in business, medicine, national defense, and engineer-

I realization of their considerable influence on our daily ing. I There has been relatively little research directed
lives. They are indispensable to airlines, automobile to the development of knowledgebase machines. 2

companies, grocery chains, department stores, hospi- There is a great deal of commonality between data-
I tals, colleges and universities, local and state govern- base systems and knowledgebase systems. In fact,

ments, and the federal government. Their existence is there is considerable research and development cur-
so important that in many organizations the database rently going on which is aimed at the integration of the
is considered a resource as are personnel and raw mate- two types of system. One of the results of this integra-I rials. tion is the requirement for increased performance of

Since software database management systems the integrated system over either of the individual
(DBMS) often exhibit poor performance, considerable systems. Database machines have had as their objec-
research has been devoted to specialized hardware de- tive an increase in the performance of the databaseI vices, called database machines, to seek performance system primarily in addressing problems that have a
improvement. These devices take advantage of the very large database and/or a real time requirement.
significant advances in electronic hardware technology While the performance of these systems has been im-
by moving software functions into hardware and pos- proved somewhat, they have not yielded the results
sess considerable parallelism, that were desired.

One of the most rapidly growing fields of artificial In dealing with the types of very large and/or real
intelligence (A) is knowledgebase systems. A know- time problem that we are interested in, it is natural to
ledgebase consists of rules and facts about particular look to optics for possible solutions. This is due to the
domains of interest, and knowledgebase management large storage capacities available through the use of

optical media and the inherent speed and parallelism
of light. Thus we examine here the potential perform-
ance improvements obtainable from optical database/
knowledgebase machines.

----- mWe begin by considering database management. da-
P. B. Berra is with Syracuse University, Department of Electrical tabase machines, and knowledgebase management.

'I Computer Engineering, Syracuse, New York 13244-1240; K.-H. We then present a paradigm for analyzing the poten-I renne is with University of Erlangen-Nuremberg, Physics Insti- tial advantages of optics. This is followed by sections
rut, D-8520 Erlangen Federal Republic of Germany; W. T. Cathey on storage strategies, access strategies, and processing
i ith University of Colorado, Center for Optoelectronic Comput- of data prior to conversion to electronic form. Finally,

i Wi Systems, Boulder, Colorado 80309-0425; H. J. Caulfield is with we summarize our analyses and cite some future direc-
Uaiversity of Alabama, Center for Applied Optics, Huntsville, Ala- tions that hold considerable promise.
bhma 35899;, S. H. Lee is with University of California, San Diego,
Electrical & Computer Engineering Department, La Jolla, Califor-
I hs 92093; and H Szu in with U.S. Naval Research Laboratory, U BkU'o~xid
Washington, DC 20375-5000.
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I
managing the database as a resource independent of the request into a series of commands that can be

the computer hardware that hosts it and application executed by the backend database machine. The da-
programs that interface with it. The DBMS must tabase machine handles all database functions and
have the facility to establish the database within the returns results to the host which then passes them on
system in response to the database designers. The to the user. There are many advantages of this config-
DBMS must make the data available to a wide variety uration including removal of dependence on the oper-
of users ranging from external application programs to ating system, reduction in the number of functions
a casual user posing a particular query. Inevitably, performed (i.e., the database machine only executes
the database must be updated. That is, new data must database functions), optimization of execution of cer-
be added, old data must be deleted, and existing data tain functions (i.e., special hardware for relational op-
must be changed. Thus, the DBMS must also have erations), mitigation of the access time gap problem
the capability for performing these updates. In fact, through parallel access to multiple disks and, in gener-
many databases (e.g., airline databases) have almost as al, the advantages one has in solving a more narrowly
much update activity as query activity. Of course defined problem.
there are many types of database that have limited or There are also disadvantages to this configuration.
controlled update activity (e.g., various forms of text These systems tend to be more costly and less availabledatabases). than sequential DBMSs. There are dozens of univer-

The DBMS must provide the facility for insuring the sity and industry database machine projects but there
integrity of the database. This is obtained through are just a few commrcially available products."4
various consistency checks and backup and recovery However, there are hundreds of sequential DBMSs. If
systems. Finally, the DBMS must regulate access to the problem being addressed is basically sequential, no
the database to protect it, the system itself, and the amount of parallelism will help; in fact it may even
privacy of users. degrade performance beyond that of a sequential

It is not surprising that DBMSs which furnish all of DBMS. For example, if a query consists of several
this functionality tend to be expensive and require subqueries each of which depends on the result of the
considerable computing resources to be effective, previous subquery, the traffic across the host-data-
While it is true that one can purchase DBMS for per- base machine interface will significantly degrade thesonal computers, these systems do not possess all the performance of the system.
functionality discussed above and are therefore not the As was previously pointed out, we are concerned
focus of this paper. Rather, we are concerned with with VLDB and/or real time requirements; databasesystems that must deal with very large databases machines also address these requirements. Thus,(VLDB) (hundreds of gigabytes) and/or have a rai while there may be hundreds of sequential DBMSs
time requirement (i s or less response time). available, only the few of them residing on major main-

Since the DBMS is just another application pro- frame computers are able to address the requirements.
gram, albeit with considerable subprograms, it must The comparison then comes down to large mainframe
adhere to normal execution p rocedures just as other systems with DBMSs vs database machines.
programs. The database user (a human user or aL)pli A problem addressed by most database machine
cation program) interacts with the DBMS through a designs is that of parallel access to magnetic disk.
query language (or other language) to accomplish a Their approaches are only partially successful since
task. The DBMS must interact with the operating the difficulty basically lies with the mechanics of the
system to obtain data from the database which is disk. The speed of rotation ind the extremely small
stored on the computing system's secondary memory. distance between the read-write head and the disk
Since the operating system must satisfy a large number surface are such that the sustained transfer rate of
of types of user, the size of the block of data retrieved large commercially available magnetic disks :ops out
from disk is optimized for all users and is thus fixed. at -3 Mbytes/s. The exception is multiactuator, mul-
The block of data is placed in main memory and turned tihead disks which can increase this rate but at a con-
over to the DBMS which sifts through it to find what it siderably greater cost. Because of this current limita-
wants. There may be little data of interest to the tion, database machine architects have designed their
DBMS due to the organization of the data and type of systems to be able to accept and process data from
query. Thus, the DBMS may have to ask the operat- magnetic disks at these rates. However, if data rates
ing system for many pages of data to satisfy a query. were available at 300 Mbytes/s, these database ma-
This repeated access to secondary storage consider- chines would have considerable difficulty dealing with
ably degrades the performance of the DBMS since the the situation. They would become compute bound
access time to the disk is about one million times rather than [/0 bound as is currently the case. We willslower than access to main memory. This disparity is return to this point later in the paper.
called the access time gap.

C. Applications Requirements
B. Database Machines In examining data processing in general and data-iA typical structure for a database machine is that of base processing specifically for their applicability to
a frontend-backend system. That is, the user inter- both near and far term applications, one is faced with a
acts with a sequential computer host which transforms varied and dynamic set of both operational problems
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OATAUSE SIZE signature against a library of known signatures in order
to take an appropriate response. Suppose that there
are 10,000 known radar emitter signatures, and a new
emitter appears every 100 s. The required processing
time is not related to the input rate. However, thisapplication may require a match in 10 ins to make a
timely response. While neither the measured signa-

ture, nor the signature database has 100% validity, we
would like the process to be error free. Typically, the
measured signature will have certain parameters that
are correct and some that are in error. In a specific
report, the degree of error is uncertain and the match-
ing progress must allow partial/probalistic matches.
Thus, a single input may result in many internal pro-
cesses. This application is depicted as P1 in Fig. 1.

RAs a second example, a contact comparison applica-
Stion might have a database of the order of 109 bytes, a

contact report rate of I/s, and a match requirement of
2/s. This application is depicted as P2 in Fig. 1.

PAs a third example, a monopulse signal sorter takes aIset of measured parameters on a single radar pulse and
attempts to identify the source of the pulse from a
database of emitters known to be currently hearable.
In a complex environment, there may be 1000 emitters
hearable at one site, each emitting 1000 pulses/s. The
expected report rate is then 106 pulses/s. The current

P database consists of the 1000 emitters. The time to
PROCS TODISK locate a match must be <1 us just to keep up with the

input rate. The front end sensor may produce errone-
ous results, for example, when pulses from two differ-
ent emitters are overlapping in time and may miss

Fig. 1. Size, bandwidth, and processing rate. pulses that are too weak to be detected. This will
create two problems. First, there will be holes in the
database which will not be filled in without additional
manipulation of the database; and second, there will be
residual reports that do not correspond to any real

as well as technological solutions. Rather than per- emitter. This application is depicted as P3 in Fig. 1.
forming the analysis on each of these problem/solu- If one had an infinitely fast serial machine with, say,
tion/timeframe tuples, it is desirable to develop a ge- 100 Gbytes of memory, one could solve all the example
neric analysis technique. Specifically, the technique problems, but not necessarily in a cost-effective man-
transforms the system requirements onto three inde- ner. Similarly, a very large content addressable mem-
Pendent axes: database size, bandwidth of communi- ory could be used to solve all the problems but would
cations to the disks, and processing rate as shown in be a gross overkill of certainly the first example. TheFig. 1. The size of the database is shown on the verti- challenge, then, is to develop techniques to handle the
cal axis and is measured in bytes. The bandwidth is above range of examples, which are generic functions
measured in megabytes per second and provides a of the application and the state of technology, to invest
measure of what is required to access disk storage in resources in the minimum number of architectures to
soling a variety of problems. Another measure of solve the collective database processing tasks.
bandwidth is the amount of query input data to the An important consideration is the cost of various
system. However, this input communication band- technological alternatives. For example, one can pur-
width results in considerable accesses to the disks as chase off-the-shelf chips at about $100/Mbyte and
well "i increased processing requirements. Thus we disk memory at about $50/Mbyte based on commer-
will use bandwidth to refer to internal I/O bandwidth. cially available 256k RAM chips and 100 Mbyte disks.
The third axis represents processing rate. In mul- The advantages and disadvantages of choosing chip or
tiser environments a large query load generally re- disk with regard to database size, I/O communication,
sults in a large processing load. However, relatively and processing rate can be argued in many ways de-
short complex queries can also result in large process- pending on the task at hand. RAM memory has a very
ift loads. But, in general, database management fast access time (200 ns) but is volatile while disk
Place more stress on I/O rather than on processing. memory is low (30 ma access time) and nonvolatile. In

As a first example, suppose a sensor has measured contemporary systems, RAM appears in limited quan-3 the signature of a radar and one must match this tity while disks appear in large quantity. But, with the
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relatively recent reduction in the cost of RAM, this !NT(C0,,E,:T

proportion is expected to shift dramatically in favor ofRAM.
Returning to Fig. 1, no single architecture is best for

all the tasks at hand. Specifically for database prob- SpflAA -o) C E S S I %G

lems, it depends on at least the three characteristics = 1A T R

given on the axes. For example, with P a moderate
amount of data with little need for bandwidth or pro-
cessing describes the problem. In this case, there is
little requirement for special architectures for process-
ing the data or increasing the bandwidth to disk.

With P2, there is a need for the storage of large Fig. 2. Optical/electronic paadigm

amounts of data, so considerable disk storage is re- paradigm.
quired. However, there are also moderate require-
ments for bandwidth to disk as well as processing
power. In this situation, parallel computer architec-
tures may be employed with some usefulness. We may er knowledgebases, the performance of such systems is
employ a variety of such architectures from single in- less than desirable because of the slow interface and
struction-multiple data stream to multiple instruc- the duplication of functionality of the two systems.
tion-multiple data stream. The point here is that we Another approach that is being taken is to extend the
must now look to parallel architectures to keep up with capabilities of the knowledgebase system through the
the processing load. Also, we must be able to access addition of secondary storage management. Still an-
considerable amounts of data so the bandwidth to other approach is the addition of inferencing function-
secondary storage must be high. This will require ality to existing DBMS. All these approaches are
parallel access to disks perhaps along the lines of corn- headed in the direction of an integrated knowledge-
mercially available database machines. base management system (KBMS) that possesses the

The third problem, P3, is much more difficult to deal capabilities of both systems. However, when viewed
with since it has such stringent requirements on all from a performance perspective, KBMSs will place
dimensions. Optical storage may help with this prob- even more demands on the underlying data manage-
lem due to its high density, but data will have to be ment structures. That is why it is imperative that we
retrieved from the disk at a faster rate. Optical inter- look to other technologies such as optics for possible
connects will definitely help because of high band- solutions.
width, and optical or electrooptical processing may
offer some solutions in the future.

0. Knowledgebase Management Ill. Hierarchical Structure of Processing
Knowledgebase systems are composed of a knowled- The state of the art of electronic computing enjoys

gebase of rules and facts and an inferencing mecha- considerable maturity. In contrast, optics as applied
nism that is used to respond to queries using the exist- to digital computing is very young and has yet to make
ing knowledgebase. In the case of expert systems, the its mark. In assessing how optics may help database
objective is to capture the knowledge of experts in and knowledgebase management, it seems clear that
particular domains and make it generally available to the most impact will be felt at the lowest level. Thus,
nonexperts. Various knowledge structuring tech- the approach that we have taken in this paper is an
niques include semantic networks, production rules, optoelectronic one in which we start at the very lowest
logic, and frames with the LISP and Prolog languages level and progressively move toward conversion to
in common use. Current expert systems tend to focus electronics as indicated in Fig. 2. We examine various
on narrow domains, have small knowledgebases and, type., of optical storage media and devices to assess
therefore, have limited application. As these systems their potential for use in database and knowledgebase

* expand and more general applications are considered, management. As will be discussed later, the potential
increasing demands will be placed on the management exists for enormous data rates from optical storage.
of the knowledgebase. The database of rules (called Since electronic database machines are designed to
the intensional database) will become large but the deal with magnetic disk transfer rates, they will not be
major management problem will be in the access, up- able to handle these increased rates. This dictates
date, and control of the database of facts (called the that we keep the data in optical form and do as much
extensional database). processing as we can prior to converting to electronics.

The above considerations have led to many research We will discuss the type of processing that can be done
efforts aimed at the interface and eventual integration later in the paper. However, our objective is to process
of knowledgebase systems and database systems. the optical data to the fullest extent possible so that, on
Some systems are currently available that provide an conversion, the data rate will be within the capabilities
interface between a knowledgebase system and the of the electronic computer but more content rich. In
DBMS. While this allows for the management of larg- this way we hope to increase the performance of the
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system without disturbing the large investment in sys- F.0
tern and user software. I. h 3

&"Soage OWd processin Stategy

A. Optical Disks
By far the most popular form of optical storage is MI

optical disks. These range from CD-ROMs to very Fig.3. Content addressable memory with feedback and holograph.

large disk units which allow for massive storage of ic storage.7

data.5 -6 Optical disks have a far greater capacity than
their magnetic counterpart but have a much slower
access and transfer rate. This is primarily due to the

mass of the read head and the slower revolution rate.
However, while magnetic disks appear to be approach-
ing technological limits with regard to access time and pending on the noise state of the system. To change
transfer rates, optical disks have great potential for the associative memory into a content addressable
vast improvements. This is true primarily because of memory suitable for database/knowledgebase systems
the relatively large distances between the read mecha- would require some means of recalling them all. A
nism and the disk surface. Through multibeam read- perturbation of the system would be necessary to move
ing the potential exists for massive data transfer rates the resonant system to another transverse mode and
of the order of 300-500 Mbytes/s, a full 2 orders of another output in the common file. Thus far, no such
magnitude over current magnetic disks. demonstration has been made.
B. Content Addressable Memory Another unresolved problem with holographic asso-

ciative memory (or any holographic storage system, forThere have been several laboratory demonstrations that matter) is that the possible number of stored
of associative memory.7-9 Variations of this approach images predicted by current theory is several orders of
may be applicable for a content addressable memory. magnitude greater than has been achieved experimen-

One technique, using holographic memory, is to t ude re ate anases a d im n
store the data holographically and to provide feedback tally. More accurate analyses and simulations are
with gain. This system, illustrated schematically in needed before these discrepancies can be resolved.
Fig. 3, operates as follows: The combination hologram C. Page Oriented Holograms
and resonant structure has transverse resonant modes
that are defined and limited by the images stored in the 1. Storage
hologram; that is, only resonant modes corresponding
to a holographic image are possible. A partial image is Most massive database and knowledgebase systems
fed into the hologram, which causes a more complete store data on magnetic or optical disks and employ
image to be reconstructed from the hologram. This indexing techniques to avoid or minimize disk access-
image receives gain in the nonlinear medium, and the es. Various clustering and accessing techniques are
resonant structure resonates with that image. If a used to reduce response time. Even so, when the joint
Portion of another image is input into the system, the requirements of very large databases and very shorttransverse mode associated with that image becomes response times are imposed, existing technologies de-dominant, and after a few passes around the closed grade considerably. In these cases, the ability to call
Path with gain, that image is fully recalled. If more forth and operate on large pages of data in parallel
than one stored image contains the image portion that would offer a profound advantage over serial opera-
is fed into the system, one image will start to dominate tion. Some of the issues discussed below are also
due to greater correlation with the input or the charac- addressed in Ref. 10.
teristics of the noise in the system and, once the system The basic concept of page-oriented holographic
locks onto that mode (image), it stays on that image. memory (POHM) is quite simple. Many small spa-

In a content addressable memory, it is desired that tially discrete holograms are recorded on a single sub-
all sets of data with a common part be retrieved. For strata. Some are constructed such that whenever a
eample, if the word Colorado is input to a database of laser beam is deflected to one of these holograms, the
OPtical Society members, it should be possible to re- output 2-D image falls on a common surface for all
trieve all appropriate names of members in Colorado holograms. Of course, the whole 2-D image arrives
either in series or parallel. In a database/knowledge- essentially in parallel. A 1-mm hologram, properly
base system, it is necessary that a partial input into a made, can store an array of 104- 106 bits which is a page.
file retrieve all components of that file having that An electrooptic or acoustooptic deflector can address
Partial input. In currently demonstrated associative any of these stored pages very rapidly (10-4-10 - 6 s).

i-memries, only one component would be retrieved and Access tine is limited by ljser deflection times (10- 9-

the one retrieved would differ from time to time de- 10- 6 s) or paallel readout mechanism response time
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[10-4-10 - 2 s for currently available spatial light modu- _QSER
lators (SLMs)]. Using the worst (best) case numbers,
we can recall 104 (106) bit pages in any order from
among 104 (106) such pages at a rate of 100 (104) pages/
s. Thus the capacity of POHM ranges from a few
megabytes to over a terabyte while the transfer rate -L41 -- EAM SPL'T-E
ranges from <1 Mbyte/s or >100 Gbytes/s. We can HEr.Ec I
place an optically addressed SLM at the output as an
image amplifier to read the page into the optical sys- PCH, U'UT
tem in parallel. Figure 4 shows this basic system along
with the laser readout system for the SLM.

What the SLM produces is a modulation pattern (in £

intensity, phase, polarization, etc.) but light comes
only from the portion of the SLM which is illuminated.
Thus if we illuminate the SLM addressed by the
POHM with light from a second SLM (electrically A BE-U m
addressed, intensity modulated), we can restrict entry Fig. 4. Page selection and readout. The deflector addresses a
into the optical system to those portions of the page of single hologram on the POHM and a page of data is written in
immediate interest. Figure 5 shows this part of the parallel onto the output laser beam.
system. For read-only POHMs, photographic or oth-
er conventional storage methods can be used.

Multiplexed holograms can also be stored in 3-D SLM I
photorefractive crystals.' 1.12 Two schematics of pho-
torefractive memory are shown in Fig. 6. In Fig. 6(a),
the ith image is stored by interfering the input image
with the reference (pump) beam when the photore-
fractive crystal is rotated to a specific angular position.
To read out the ith image from the photorefractive
memory, the input is turned off and the reference
beam turned on when the crystal is rotated to the
specific angular position. In Fig. 6(b), the ith image is
stored by interfering the input with a reference beam FULL
of the ith phase code. (The photorefractive crystal IRROR
need not be rotated in this alternate scheme.) To read LASER
out the ith image from the photorefractive memory, BEAM -3

* the input is turned off and the reference beam of the
ith phase code is turned on.

Presently, photorefractive crystals require millisec- SLM 2
onds to store a hologram. The hologram writing time Fig. 5. Output selection. A second SLM (SLM2. shown here-
can be reduced by using higher intensity beams. It can transmissive) is used for selective illumination of the output frot

I also be reduced for strontium barium -iobate (SBN) SLIML
by applying an electric field across the crystal. Re-
search for reducing the hologram writing time is under ,,
way by increasing impurity doping levels in the pho-
torefractive crystals. To retrieve a stored image from
a photorefractive memory, the time required can be -
much shorter than milliseconds and is determined by /

how fast the photorefractive crystal can be rotated to ,
the desired angular position in scheme (a) or how fast
the reference beam can be switched from one phase ,0 ,
code to another in scheme (b). Using SBN:60, hun-

! dreds of page-oriented holograms can be stored and WUT
retrieved in real time. MAE

Holographic storage is far from perfected despite
many millions of dollars of effort expended all over the
world in the 1970s. Uniformity among output pixels is
seldom better than 10-15%, signal-to-noise ratios can ,1 &

i be low, but, outside the Soviet Union, little work has Fig. 6. Photorefractive memory: (a) multiple holograms
been performed on POHMs this decade. Great im- storedandretrievedasafunctionofcrystalanglarpositionsand
provements arising from subsequent advances in ho- multiple holograms are stored and retrieved as a function of ph.
lography and SLMs may be expected. coded reference beams.
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2Fig. 8. Image shifting. The 2-D AO cell shifts the image in anyIT LENS direction by changing the direction of light in the Fourier plane.

LENS I

Fig. 7. Pattern selection. We can use electronically addressed
SLM3 to write a reference pattern to be matched with the light We believe that this will be complicated but perfectly
coming from POHM-driven SLMI. Fourier transform lens 1 jointly feasible using beam splitters (amplitude and polariza-
transforms both outputs onto SLM4 where they add coherently.

Another readout beam addresses SLM4 which produces bright light tion), reflex mirrors, multiple POHMs, etc. The sys-
on the output plane where the reference pattern is matched with a tem, at least initially, will be large and expensive, but

portion of the input beam from SLM. the users of very large DB/KB systems are used to size
and cost now. What optics adds is high speed.

3. Two-Dimensional Access

It is possible, in principle, to move both the medium
and the beam in such a way as to use the fastest2. Processing available 1-D scanners, .g., chirped acoustooptic cells,It will be of interest to search the illuminated por- with much slower medium translators to interrogate a

tion of the retrieved page in parallel for space-invari- 2-D data array at a bit rate approaching that of the fast
ant pattern recognition. Fourier optics is known to be scanner. Suppose an N-bit fast-scan horizontal pat-
excellent for this purpose if we know ahead of time tern is available. Let the medium move vertically at a
what pattern(s) we want to recognize and prepare ap- speed Sm. Let the fast acoustooptic scan speed be S.
propriate pattern recognition masks. While this tech- >> Sm,. Then, by tilting the scan direction at an angle
nique will be useful in certain cases, it offers insuffi-
cient flexibility for general DB/KB purposes, so we s tan-'(SJS0 ) SlSo « I
must use other techniques such as joint transform from the horizontal we can sweep out a horizontal path
correlation. 13-15 To do joint transform correlation, we at speed S.. By making rows correspond to attributes
generate a reference pattern on yet another SLM and or to objects in a relational database, this method could
use one lens to jointly Fourier transform both images allow up to gigahertz access to the interesting part of a
which must be illuminated by the same laser in such a database.
manner that they are mutually coherent in the Fourier By far the fastest access to a random bit and thePlane. There they strike yet another SLM which is most bits read out in parallel result from page-orientedread out by yet another laser beam. That laser beam, holographic memories discussed earlier 16 and shown in
after reflection from the SLM, is again Fourier trans- Fig. 4. Let there be H2 holograms (Hx H array) each
formed to produce an ouptut which resembles the in- presenting a B X B bit array to the SLM when illumi-
put page but is bright only where the reference pattern nated. The maximum deflection time is t,,. Clearly,appears in the page. This output pattern must be any particular bit from the /WB2 number of stored bits
thresholded optically (in parallel) or electronically. can enter the optical system in an access time
Figure 7 shows this arrangement. T - max(t,t,).

Finally, data must be copied from the page onto a
scratchpad memory. Where possible, this too should where t, is the SLM response time. Probably, T = t,
occur in parallel. If we assume that we can accumulate can now be 10-6 s. For H = B = 103 (a very large
data over time in parallel on a 2-D charge-coupled POHM since the individual holograms must be 1-2
device (CCD) array for eventual CCD readout the mm), we have 1012 bits accessible in 10- 6 s or 1018 bits/problem becomes one of illuminating only the right s. Even if we immediately convert the data to serial
part of the page (a problem discussed earlier) and format, we still have access at 10 5 bits/s. Neverthe-
deflecting that light to the right part of the detector less, the best course, if feasible, is to keep the page
array A fast (microsecond) 2-D acoustooptic image operations parallel and, hence, optical for as long asI canner should be ideal for this tak. Figure 8 shows possible.how thisvariable spacing grating can be used in this Another approach is to select one of an array ofmanner, holograms as before but allow each hologram to store

Omitted from this discussion of basic methods are multiple images.17 If the images are angularly multi-
drawings of how all the parts fit together in one system. plexed, a 2-D acoustooptic cell at or imaged onto the
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hologram can allow selection of the desired wavefront.
If the images are wavelength multiplexed we must
adjust the deflector and tunable source jointly. A
hologram storing N images reduces the POHM area by
N. However, multiplexed holograms experience re- SSl'-
duced signal-to-noise ratio or dynamic range. pEAFIH rRJN StJIUBTJN PAI~rERN

D. Spatial Light Modul~ators
There are presently several spatial light modulators

(SLMs) which exhibit optical memory characteristics
and may be considered for page-oriented memory ap-
plications. They are microchannel spatial light modu-
lators,18,19 ferroelectric liquid crystals,2° - 23 multiple *VUT PLANE NTMRMEDATE PLANE W _PUT PLANE
quantum wells,24- 2 7 silicon-electrooptic modulators,28

and thermoplastics. 29  Fig. 9. Pattern substitution.

1. SLM Storage

Fast, high density reprogrammable electronic mem-
ories are widely available. The electronic memory can allel search for artificial intelligence.37 38 By allowing
be divided into N(n X n) cells in an array format. If parallel readout from mass optical storage to address

optical input and outputs in the form of phototransis- in parallel the n X n ports of an N-port processing SLM
torn and optical modulators, respectively, can be added (with or without an optical matrix-tensor multiplier
to each of the N cells of the memory array, we can attached), many well-defined processing functions can
obtain an optically accessible N-port memory SLM be performed at high speed. Then, the electronic data
where N is the number of optical input-output ports. converted from such processed optical data will have
This memory will be page oriented because all N-ports much lower data rates on the average, and the data will
arranged in the array format can be accessed in paral- be much richer in information.
lel. The number of memory circuits in each cell will be
the depth of the N-port memory. E. Symbolic Substitution

To provide the optical inputs and outputs for the N- In addition to parallel optical readout and parallel
port memory, research on phototransistor design and optical data comparison it is also desirable to include
silicon-electrooptic material integration has been per- more complex optical processing operations, such as a
formed.25 3

0
-32 With PLZT as the modulator material, search with wildcards or a conditioned search before

it is estimated that memory access time of 1 As is the data are transferred to the electronic system. Cer-
attainable. Low loss polarization switching at micro- tain requirements have to be met, however, by an
second rates has been demonstrated with ferroelectric optical preprocessor for it to be applicable to database
liquid (FLC) crystals 2 and photo-addressed FLC systems.
SLMs have been demonstrated. 23  New electrooptic
materials such as organic polymers and GaA1As or InP 1. Requirements for an Optical Preprocessor
multiple quantum well structures 6.27 are currently be- In response to a user query, a large number of stored
ing studied for access time improvements. pages are often called up from secondary storage even

Depending on how the electronic memory in each though generally a large percentage of these pages are
cell is organized, the N-port memory can be accessed not of interest. To reduce the information presented
by address or by content. Depending on which and to the electronic system, it is necessary to provide
how many cells of the N-port memory are activated, parallel digital optical processing involving memory
pages of information can be retrieved in parts or in functions and programmability and to match the pro-

their entirety. cessing rate at which data are read from the storage
medium. A pipeline architecture is advantageous be-

2. Processing cause the processing rate is more important than the
It is also possible to perform logic using the SLM.33-36 pipeline delay. The length of the pipeline can serve tc

If many (or some) of the memory circuits in each cell of adapt the complexity of operation to the requirements.
the N-port memory SLMs are replaced by logic cir- In addition to this time parallelism provided by the
cuits, we obtain an N-port processing SLM, which can pipeline architecture, spatial parallelism matching the
combine the processing power of silicon electronics page size on the storage medium is desirable for pro-
and the communication or interconnection capability cessing. A typical format consists of 2-Kbyte data
of optics. Depending on the design of logic circuits in pages corresponding to 16 Kbits or a 128 X 128 size
each cell, important processing operations such as pixel array. Operation on these arrays must occur at
comparison and matching between new and stored the readout rate and be rich enough to perform useful
data can be performed in parallel. Furthermore, if the work. Finally, the optical processor should not be
N-port processing SLM can serve as the input of an fixed but programmable to adapt it to various de-
optical matrix-tensor multiplier, we can perform par- mands.
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2. Principle of Symbolic Substitution Logic Function: Substitution Rules:

*A well-developed technique for optical digital pro-
ceasing is symbolic substitution.9.40 This logic is able XOR
to emulate Boolean logic, cellular logic, arithmetic, and 0 0 0 0 0 - 0
Turing machines. Recently a functionally program- 0 1 1 -
mable module was proposed. 41 The elementary oper- 1 0 1
ation of symbolic substitution is pattern substitution 1 1 0 0 1 1
as indicated in Fig. 9. Each occurrence of the searchU pattern in the input plane is marked in the intermedi-
ate plane by a bright dot. In the substitution phase 1 0 - 1
each of these dots is replaced by the substitution pat-
tern. These primitive operations are easy to imple-
ment optically and, with future developments in opti- 1 1 0
cal devices, can be executed extremely fast, because Fig. 10. EXCLUSIVE OR with symbolic substitution.
the technique can be applied in parallel.

Symbolic substitution operates on binary matrices.I Logic can be performed by transforming all the occur-
rences of a given spatial configuration of binary ele- control contro l control
ments into a different spatial configuration as shownW in Fig. 10. Several different transformations can also
be implemented optically in parallel. One optical pat- n A
tern transformation block consists of a recognition data lt

part, an optical inverter array, and a substitution part. L
Both the recognizer and the substituter parts are pas-
sive optical components and are matched to their cor- SHIFT SHIFT LOGIC SWITCH
responding search pattern and replacement pattern,
respectively. The inverter array is the active compo- data

nent, responsible for thresholding and optical power Fig. 11. Functionally programmable module.
regeneration.

Processing can be achieved by applying several dif-
ferent pattern transformations, also called substitu-
tion rules, simultaneously. The parallelism of optics Architectually, one substitution rule is implemented
thus is used at a low level to increase speed rather than by one optical module. Several modules implement-
for high level parallel processing. Although these pat- ing different substitution rules can be arranged either
tern transformations are global or space invariant op- in parallel or in sequence, thus forming an achitecture
erations (the same rules apply to all locations on the for a processor. The functionally programmable mod-
array) it has been shown that this mechanism is also ule4 2 consists of a series of transformation blocks toable to support local operations. perform controlled shift operations and to perform

The time for an N-rule pattern transformation is logic as shown in Fig. 11. Every bit in the array can be
independent of the number of rules and is given by the programmed to mi, e in four possible directions. The
propagation time of light through the setup and by the logic set includes EXCLUSIVE OR, AND, and the identi-
response time of the inverter array. For very fast ty operator. The program for this module is interlacedI Processing, the propagation time, which could be of the with the data and enters as a stream of optical bit
order of 1 ns, could be comparable with the switching arrays.
time of the inverter array. The progagation time cor- In an optical parallel pipeline processor, two types of
responds to the latency of a pipeline processor whereas parallelism exist. The first type concerns the parallel
the throughput depends on the switching time of the processing of many data within a 2-D processing array.
inverter array. At high data rates, it is necessary to This type may be called spatial parallelism. In a pipe-avoid clock skew. Symbolic substitution supports in- line there is also a second type of parallelism. In each
terconnects with a latency that is constant down to stage of the pipeline, an array of data is processed
femtoseconds. simultaneously, typically by different operations.

Symbolic substitution also supports constant fan in The degree of parallelism in a pipeline is given by the
and constant fan out gates, because the substitution number of stages. This type of parallelism may beI rules, specifying the search and the substitution pat- called time parallelism. For a database processor both
tern, are fixed. This feature is important because types of parallelism are applicable. If the processing
large fan out implies high power consumption and high array is the same size as the readout array, the process-
clock rates can be achieved only if the gates are opti- ing stages have to be cascaded. Between those ex-
mnized with respect to a small and constant number of tremes any trade-off between lateral and longitudinal
"'Puts and outputs. complexity is feasible.
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5 Page Oriented Holographic Memories and Optical P;ttern Recognition

H. .1. Cauilfield

Center for Applipd Optics

The University of Alabama in Hintsville
lHntsville, Alabama 35899

£ Abstract

In the twenty-two years since VanderLugt's introduction of holographic matched filtering. the intensive

research carried (ut throughout the world has led to no applications in complex environment. This leads one

to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex
problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering opers-

tion. We introduice here an approach to the real time filter assembly: use of page oriented holographic
memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using -i

104 to 10. stored pattern base.

Introduction

Whether the twenty-two years of research on VanderLugt's filtering has been suiccessful or not depends on

how one defines success. From a researcher's point of view. it has been very successful Literally hun-

dreds of Ph.D. theses have been written. Many papers have been written. Simply reviewing the review arti

cles would be a significant task. Therefore, it has been a successful topic in generating research work
If, however, success means application of this technology in the field from which most of the mone' has

come: (military applications), then the field has been far from a success. This paper has two gals
First, it seeks to offer an explanation of the apparent failure. Second, it offers a new ipproach which
attacks the problem identified.

In numerical calculations, the word complexity has a well-defined meaning. If we regard the operat I nf

pattern recogniton as a well defined n.merical operation, we could define the complexity of thut operIr,) n

On the other hand. there are a jariety of pattern recognition schemes ranging from corre'lation with a single
prototype to correlation - a large bank of prototypes to far more complex operations perhaps involving
motion of the mask and, or oject. The scene itself has complexity. One measure of this is its information

content. This, howe 'r s somewhat misleading. If we mean by complexity the difficulty of the problem.

the difficulty arises ..at just from the amount of information that can be packed into a scene not from the
within-class and between-class variations of realistic objects. If we model human pattern ognition as a

syntactic process with a vast store of rather flexible prototypes. pattern recognition is probably an NP
problem.

The point of all this is that realistic problems involve tremendous variations among a vast number of

possible prototypes. The idea that one or even a bank of a thousand filtei could be adequate to such a
task seems, on the surface, highly improbable. There is simply not enough stored information to do the task

properly. I believe that this is one of the fundamental reasons VanderLugt filtering has failed to give
adequate results for truly realistic complex situations. If this analysis is correct, there is only one

possible solution: vastly increase the information available to do the filtering.

Exhaustive Versus Nonexhaustive Search

If we are to store and search a truly vast amount of information, we must reexamine the previous inclina-
tion toward exhaustive search of the memory. Clearly, human beings do not employ exhaustive search in their
pattern recognition. In reading these words you are searching known patterns of English letters and words

using the context of knowing that this is a paper on optical pattern recogniton being written in English
and. for some of you. even knowing something of the style of the author. Therefore, you do not have to be
searching that part of your memory which deals with the names of your pet dogs or of words in foreign lan-
guages or of the map of your city. This represents a compromise between speed and thoroughness. That com-

promise can be accomplished in many ways. Nevertheless, the important thing for these purposes is to

recognize that the compromise was necessary and wise.

The Applications of Paze Oriented Hololrjahi ,emories

gAs is known to a great many of the readers of this paper. page oriented holographic memories allow stor-
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itself can be changed. Currently, this is in the region of I milisecond per frame, but one microsecond

frame time spatial light modulators are currently being constructed at various locations. Thus, at the

extreme. we could do an exhaustive search of a million spatial light modulator patterns in the time of one

second. Because one second is usually too slow and also because we do not wish to digest that much informa-
tion each second, it seems prudent to consider intelligent nonexhaustive searching.

Ut I lzat ion of Stored Inf-ormat ion -for Pattern R cgf.n tlon

Because the spatial light modulator is limited to the range of 10
4 

to 10' pixels. we must be clever in

the way we use the stored information. By comparison with a film hologram, for instance, the spatial light

modulator may contain only a fraction of a percent of the information content. Two approaches seem reaso-

nable. One is to design pattern recognition kiniforms using yet-to-be-dileanated rules for working in this

pixel impoverished environment. The other approach is to store not the filter but the object whose complex
conjugated Fourier transform is the filter We use that "image" to be one input in a joint transform corre-

i lator. The balance of this paper is written in such a way as to be independent of that particular choice

Mask Management

Perhaps the most important featurp of the massive memory optical pattern recognizer is the intelligent

i se of the stored data. That is. the plan for appropriate nonexhaustive search. Because random access to

any of the stored patterns can be achieved so rapidly, the physical arrangement of holograms on the common

substrate is essentially of no importance. On the other hand, the data jase management in the electronic

domain that determines which hologram is addressed at any instance needs to be designed very carefully.

Thus. as Is often the case, it is electronics and not optics that represents the, ultimate limitation. We

now explore some of the possible data base management concepts which are appropriate for optical pattern

recognition.

It may be that what we want to do is arrange the memory in terms of object parameter variations. Those

v ariations may be due to range and/or orientation of the object relative to the observation system. Also

stored might be wavelength of those patterns. In any case, there is a multidimensional parameter space

which must be searched. This would appear to require a multidimensional tesselation of that space after

appropriate scale and distortion of that space to reflect importance and in realistic variability. What isR then needed is a lookup table which transforms parameter sets to x-y deflection to call forth the proper

mask information from the hologram. Thus we must design a sensible map from the many dimensional space to

whatever arbitrary two dimensional pattern we have used to store the data on the hologram. It is not my

purpose to discuss the design of multidimensional lookup tables in this paper.

3One obvious use of the hologram or holograms is to do exhaustive search by category. The hologram or

holograms can be organized in such a way that they are restricted in category or context. For instance in a

military environment, one might wish to apply entirely different sets of masks for target acquisition, tar-
get trackinf. and terminal holding. These can represent separate regions on the hologram are even separateI holograms. Again, it is not so much the organization of the hologram as the organization of the electronic

addresser that is of importance. If the number of contexts or per categories is sufficiently large and suf-

ficient fuzzy, it may be that it is sufficient to specify a context and do exhaustive searching with that

context. This represents a two level organization. The first level is to determine the appropriate con-* text. At the second level, we simply do exhaustive searching. From here, it is not hard to generalize to a

multi level search. Broad context are sought and then narrow context sought within those. This establishes

a tree structure.

It is possible to consider composite masks or as variously termed "linear combinations of matched

filters" (1) or "composite matched filters" (2). We accomplish positive weightings by sequencing through

all of the positively weighted components and varying, for example. the intensity of the laser beam. The

time Integrated correlation plane pattern is then stored. Next, we generate the sum of negatively weighted

components in a second memory. Finally, we sub stract the two integrated images to obtain the desired

results. We then have the potentiality of generating quite general filters simply by controlling the

waltings. Implicit in this is the assumption that we can run through a wide variety of masks very rapidly.

Even with the slowest of current spatial light modulators, It takes only two frames to do a general compos-

ite matched filtering. That is because we are averaging or integrating during the entire cycle. The

weights can be predetermined or even adaptively determined.

Conclusion

The material just presented is an outline of one approach to the vast increase in complexity that is pro-

bably needed to make optical pattern recognition practical for many purposes. Because the page oriented
holographic offers storage and access capabilities far beyond those which can be offered electronically, the

value of optics is enhanced. That is. this is a clear illustration of a case in which optics can make prac-

tical what would be essentially impossible electronically. As with any new solution, this one carries with' it a great many new problems. I hope that the outline of these problems is greeted as an opportunity for

Invention and not as an excuse for inaction. Any time we have an opportuity to do something important that

cannot be done electronically, we should explore that opportunity carefully.
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PAGE ORIENTED HOLOGRAPHIC MEMORY ADDRESSING OF OPTICAL BISTABLE DEVICES ARRAYS

H. J. Caulfield

Center for Applied Optics. The University of Alabama !n Huntsville

Huntsville, Alabama 35899

Abstract

Page Oriented Holographic Memories can be used as stored microprograms. Because they may not give
highly accurate signal levels, e.g. to 0.1% as may be needed, these holograms should address not a device
array but an array of optical bistable shutters through which adjustable stable light beams may pass.

TPage Oriented Holographic Memories

Their Glorious Past

There was a time in the mid 1960's and 1970's when page oriented holographic memories (hereafter, POHM's)
held center stage in the world's holography effort. The United States efforts included massive efforts by
IBM (Lohmann, Bryngdahl, etc.) and AT&T (Collier, Borckhardt. Lin, Anderson. etc.) The most massive

European effort was by Philips. The hope was to build a read-write memory of gigantic storage capacity
(say, lO

1  
bits) with exceptional random access time (say, 10-4 seconds). This 10l1 or better bit per sec-

ond random access memory was to fee the hoped for supercomputer of the 1980s.

The basic concept (1) is extremely simple. The first Figure illustrates it schematically. Many small
holograms were to be formed on nonoverlapping areas of the same substrate. A lmm diameter subhologram might
produce an image of a 1024 x 1024 array of on - off points. The real image from each subhologram is formed
at the same place in space. At that place an array of parallel read out detectors was to be placed. By
deflecting a laser beam so that the proper hologram was illuminated, we could cause any one of the stored
point patterns to hit the parallel detector array essentially instantly. Deflectors of nanosecond randome access capabilities were built. Careers were built. Soon, however, the projects were abandoned.

What went wrong? In a word: everything. The search for a suitable read-write material failed. The

ultimate use failed to materialize as did arrays of 1024 x 1024 parallel readout 1 nanosecond detectors. ItI was never clear how supercomputers could use that such data at that rate.

Their Inzlorious Present

Across the world, POHNs are dead. It is not even a serious research field. The sole exception to this

sad tale is the Soviet Union which has what appears to be a significant effort in this field. Someone, we
or they, Is wrong.

Why are the Soviets doing this? If we only read their English language publications (2). 'he answer
I becomes clear.

Their Glorious Future

The future of POi1s is optical computing. We use the POH. to reprogram an optically ,iddressed spatial

light modulator (SLN). SLMs are, at last, becoming fast. Parallel read in and parallel read out are tri-
vial. Furthermore, for many purposes, a read only POHN suffices. Every objection to the POR r:'om the
1960s has vanished in the 1980s.

En bl n Uses With Optical Bistable Device 
(OBD) Ar ay,

IEnablinm
We may wish to use the 080 array for blocking unwanted Interconnections. For U;:stance an optical cross-

bar could be formed using an N x N OD array to perform I to 1 connection of N sources to N rece:vers (3).
For each of the 38 possible interconnections there is precisely one on-off pattern for the OBD. array that
achieves It. The signal beams themselves can be relatively weak so that even N of them will not switch 'he
ODD. A PO1W could then be used to switch (enable) the appropriate OBDs. Wavelength. polarization. angle.
or some combination of these can separate the signal beam from the stronger enabling beam. Parallel

addressing makes the reprogramming fast (limited by either the OBD or the light deflector)
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j optical Fredkin Gate Arrays

In a prior publication (4) we showed that optical Fredkin gate arrays allow

I * logic (all functions),
* memory, and

I interconnections.

A pending publication (5) shows that N(N-l)/2 Fredkin gate array can make an N x N optical crossbar switch
If the array can be addressed optically it can be switched by a POKM. All of this is of interest to an OBD
conference only if OBD Fredkin gates are possible. We now show that they are.

An ordinary logical gate Is really a nonlinear function generator. Two input binary variables (A and B)
generate a binary output C. Since there ure only four possible A. B patterns, C is often represented by a
truth table. The truth table for the AND function is shown below.

A B C - A AND B
0 0 0
0 1 1

1 1

There are fewer outputs than inputs, so information is lost. For example, if A AND B is 1. we can no longer

say what values A and B had.

A Fredkin gate conserves information. The next Figure shows a Fredkin gate schematically. There are
three Inputs (A, B, and C) and three outputs (A', B', and C'). Given one set of three, we can Infer the
other set using

C'- C

IF IF
C=O C=1

A' -- A A' -- B
~B' B 8'.--A

Reference 5 and other references therein show that such gates can perform all logical functions, many memory
operations, and quite generalized switching.

We turn now to OBD Fredkin gates. One way to assemble one of these is shown below.

The intensities of A and B are below threshold and so is their sum. so with C-O, the OBD reflects achieving
A'-A and B'-B. With sufficient applied signal (C-l). the OBD transmits giving A'-B and B'-A.

A second version is shown in Figure below. The A states is vertically polarized. The B state is verti-
cally polarized. An ordinary

beamsplitter (OBS) directs light to a polarizing beamsplitter (PBS) which directs the vertically polarized
light down to form A' and transmits the horizontally polarized light to form B'. Thus in the reflective
mode of the OBM (C-0O), A'-A and B'-B. When the OBD threshold is exceeded (C-l). the vertically polarized
light A, is reflected into the B' channel and vice versa
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A third version, preferable to the second for cascading, marks A and A' with vertical poiarization and 8
and B' with vertical polarization. This is easy to do as shown in Figure below.

, OBD

A. B

I\ A'., B'

Also shown in Figure above is a lossless recombiner

Let us represent a generic 080 Fredkin gate as in Figure below.

A A'

B 0 B'

3e can then combiqe these in various ways (6). For example, to connect a linear array of 2N sources to a
linear array of 2" detectors we need 2N layers of OD Fredkin gates as indicated in Figure below for N=2.

I
Im,

If we ,se a 00HM to switch the N(N-1),'2 OBD Fredkin gates, the switching time is limited by the slower of
two times. the detector response time or the laser deflection time.

CONCLUSIONS

lOptit a] bistable devices (OBDs) can be viewed as optically controllable operators. Arrays of optical
bistable devices can be "programmed" by patterned light from any of 104 to 106 holograms any of which can t"
accessed in d laser deflection time (from milliseconds mechanically to microseconds acoustooptically to
t, ranoseconds electrooptcaly). If the ORDs can respond in nanoseconds. this represents the switching
speed. tltruough 106 to 10

6 
Is a large number of "programs." it is rertainlv finite. In this sensp wp havw
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OPTICAL MAPPING APPLICATIONSI H. J. Caulfield

The University of Alabama in Huntsville, Center for Applied Optics3 Huntsville, Alabama 35899

ABSTRACT

Holography can be used for arbitrary, parallel, weighted mappings between planes with up to to 10'
pixels each at 1/0 limited rates. This allows precaiculated mapping* to occur at very high speed. The
applications for one-to-one. one-to-many. many-to-onte. and many-to-many maps are explored here.

5 1. INTRODUCTION
Recently (1.2). 1 have shown that It is possible to sap large aput scenes (up to to 1000 1 1000) into

large output scenes (up to 1000 x 1000) using arrays of holograms. Figure 1 shows a schematic drawing ofa
passive (Spatial Light Modulator or SLM) Input system. Figure 2 Is a schematic drawing of an active (source

array) input. we will devote less attention to the hardware than to the applications In what follows.

3fI//

Fig. . An W~ hologram array is iwaed asto -n MM output array through

an SIX. Each hologram illustuatee the SIX with a unique pattern

of light. ALl work to parallel.
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5 The three types of mapping of interest below are one-to-one, one-to-many. and many-to-many.

2. ONE-TO-ONE MAPPING

3This applications Is sometimes called "coordinate transformation." Sos familiar transformation@ are

X.y - r.0
Polar3 r.0 - x.y

x.y - log(x).log(y)
x.y - exp(x).exp(y)

*etc.

The patterns are calculated and embodied In holograms. The transformations are then speed limited by
Input/Output or I/0.

It in not necessary that the mapping have a geometric Intwrpretation. For example, x and y could be
the first two principal components In an N dimensional feature space (the two orthogonal vectors in that
space along which best separation among events occurs). Thus the x-y location of an event gives a closest-
category Interpretation an a probability measure. We can use as an output one dimension along which catego-
ries are arrayed and a second dimension which gives the probability scale for that event.

Likewise mappings need not be confined to two dimensions. We can represent N dimensional spaces by
positions along a one-dimensional space filling curve. Or we can sample the space In some more pictorial
fashion such as shown In Figure 3.

In principle. we do not absolutely require uniform spacing in either the input plane or the output
plane, so. for example, uniformly spaced x. y points can be transformed Into nonuniformly spaced y,6 points.
This allows an "exact" (no interpolation/extrapolation) mapping. This can present an accuracy problem If it
requires the holograms to overlap.

3. ONE TO-MY AND MANY-TO-ONE 1APPINGS

A good example of the use of holographic many-to-one mapping Is In an optical Dempster-Shafer (0-S)
evidential reasoning machine (3). It is easy to show that to update our beliefs on the basis of new evi-
dence using vector outer products to "correlate" evidence and holograms to route

- outer product terms consistent with proposition P1 to a detector to give the unnorsalized sup-

port Sl outer product terms inconsistent with P1 to a detector to give the unnormalized doubt D i , and

- mutually inconsistent outer product terms Into a single detector to give a ter 1.

I We then calculate our new beliefs

bi - (Si. PI)

about proposition Pi. where

S - support for P1 - St/(1-I)

I and
Pi - plausibility of Pi " [I'(DL/(I))]"

A good one-to-many application is the Hough transform. In a Hough transform for parametric fit of

straight lines to x.y Input points, we sight use equations of the form

y - axb.

The s*ralght lines through the point axoy satisfy

b .-_oamy O ,

That is a point In the x.y plane maps into a straight line In bm space. Two points map into two straight
lines. The intersection of those lines gives the b and m of the line through both points. Many x.y points
lead to many intersections in bim. On the other hand, points "pile up" near b.m points which represent mul-
tiple point straight lines In x.y. With this method we can do large Hough transforms in 0(1) tims (- milli-
seconds due to 1/0).
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4_.__PNY-TO-MANY MAPPINGS

There Is evidence that biological reasoning uses mapping of information from one "frame of reference"
to another (4). Locations representing multiple data coincidence neighborhoods can map Into decision plane
neighborhoods In another plane.

of course, the ultimate computer goal is intelligence. The physical basis for an intelligent computer
must be highly complex. To achieve useful intelligence. we will need high speed as well. Using this method
we can interconnect each of a 1000 x 1000 input array to each of a 1000 x 1000 output array fully in
parallel. This combination of complexity and speed (e.g. 10'a Interconnections in a millisecond or 10''
connections per second) could serve as the physical basis for true intelligence if such more attention is

devoted to how to transduce cognitive concepts into the appropriate form of entry into this system ().5 5. CONCLUSION

The ability of optics to perform full Interconnection from a large input array to a large output array
in parallel creates many new possibilities. Fast algorithms. e.g. for Hough transforms, are not needed. if
we need the speed and can afford the hardware, they can be done in the time required for I/0. Advanced com-
putational methods which would be too slow with partially serial electronics become feasible with parallel
optics. In particular massive neural networks fit in this category.
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STACKED PAGE ORIENTED HOLOGRAPHIC MENORY

H3 J. Caulfield

The University of Alabama in Huntsville. Center for Applied Optics3 Huntsville. Alabama 35899

While page oriented holographic memories are extremely valuable, they can take a greet amount of lateral
space. We show here how to stack a number of holograms In such a way that we can select one layer to be
active." As a result, the lateral area needed to tore a given number of holograms is reduced by L, the

I 1. I _NTRODUCT ION

Conceived of by Saits and Gallaher (1) as a computer memory, the Page Oriented Holographic Memory (POr)
appears to have found many applications In optical computing (2.3.4.5.6). The basic POWM geometry is shown
in Fig. 2. A laser beam Is deflected to the proper subhologram. Whatever hologram Is illuminated produces
an output light pattern at a preselected location. In optical computing. we normally use an optically
addressed spatial light modulator at that location.

I
Fie. 2. LIG ENTERING FROM THE LEFT CAN Atg DIRECTED OUT ANY OP THE CELLS.

The primar problem with POEN• Is that the subholograms need to be one to two millimeters in diameter.
If we want to have, say, a 1000 x 1000 array; we need at least one square meter of substrate.

The goal of this work Is to find a way to compact the POW laterally by extending It longitudinally Into
L layers. It we can then select the layer of interest, we can address by x. y. and k. where k is the index

I -. iXi1 SELCTION
Polarization seems to be the most logical layer selection method. A longitudinally Pockels cell can

change the polarization of the light passing through It. A second longitudinally PockelI cell can change
the polarization back to its original state. Thus, what we want is a POW which works for one polarization
state but not for the orthogonal state. For many years I have sought suitably asymmetric holograms. The
only hologram with a truly massive esymmetry I have come us with (thanks to Steve Case and Tomasci Jannson)
is a thick hologram in which the rays are diffracted by 90 inside the hologram. For a variety of reasons.
this is not a good solution for stacked POHMs. Thus I turned to what I call "polarization transducers" -
devices which convert polarization Into other properties.

A polarization transducer Is a device that changes polarization (which is easy to control) into some

other property which might be more difficult to control. In particular, having had some previous experience
in using polarization switches and birefringent prisms to direct light to suitable holograms (2). I thought
to apply this technology to stacked holograms. What now follows Is a step by step description of the3 buildup of a stacked hologram array.

I
I
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I First. we can consider a single element as shown In Figure 1. Depending on the polarization state, which

depends on the incidence polarization and whether the switch to 0n or off, light is either transmitted

through the prism or deflected downward. The light which continues to propagate can enter other such units.

The light deflected downward strikes a hologram on the bottom side of the prism. Thus. that hologram is

eliminated or not eliminated depending on whether the polarization of light passing through the switch is
proper.

Second. we can stack a large number of these longitudinally. Figure 2 shows the scheme. Clearly. one

addressing bean can address any of those holograms.

Third, we can arrange a plane filled with such devices as shown in Figure 3. Now. wherever we put a beam

along a line, we can readout from a particular layer. That is. we can address a two dimensional array of

holograme via a one dimensional scan plus polarization switching of layers.

Polarizing
Beasplitter3 Prim

Hdn~ ologram
Pockle cell

Fig. 1. Light is incident of a polarization switch which
either rotates the plae of polarization 900 or FIG. 3. BY EXPANDING THE PRISMS AND CULLS CONTIN"
lees it unrotated. The light than enters a

poaletfm primo Depending on the polarization. UOUSLY WE CAN MAKE A SHEET OF CELLS OF THE
that Pimtrs t Or deflects the beam down- v g. DvIoNS SO
ward by W0. A hologram on the bottom of the i.1TP.TaDVSO.SHWDAE,
prism ca, therefore, be addressed. we ssss CORRESPOND TO SEPARATE LISHT PATHS DUT NOT
that the hologram _ highly efficient. crane- TO PHYSICAl DIVISIONS.
mUtting at met 10

" of the incident light.
Such halogram are now routine in dichrouatsd
gelatin.

I
Fourth. we come to the moat difficult part of stacking these layers on top of each so that we fill a

three dimensional space full of accessible holograms (Fig. 4). The problem with this scheme is that each
layer must be readout through all layers between It and the target plane. Those layers contain a variety of
switches, prisms and holograms. It remains to be seen what quality of image can be formed through these.
Also polarization effects could be disastrous. What is certain, is that the exposures must take place
through all Intervening media. Holograms so recorded can compensate for a great many minor refractive
defects. One the other hand, they cannot compensate for changes in polarization or for light bent away from
the region of the bologramn Itself. In all likelihood, it will take considerable experimentation to learn to

do this properly.

I
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REAL SURFACE

--- CONCEPTUAL
SURFACE

FIG. 4. IN THE 3D VERSION, THE POCXELS CELLS ARE

CONTINUOUS IN TWO DIMENSIONS WHILE THE
PRIS S FALL INTO DISTINCT LAYERS BUT ARE
CONTINUOUS WITHIN THE LAYERS.

3 -DISCUSS-ION

The primary effect of the scheme we have Just discussed Is to fill a three dimensional space rather than
a two dimensional space with page oriented holograms. This Is clearly a better use of space than the tradl-
tional POl. On the other hand, much remains to be explored concerning how well holograms can perform
through layers of other holograms. Som sort of quasi Fourier transform hologram seems Indicated, see Fig.
5. To select a hologram, we select a layer by switching one of the Pockels cells and then deflect x-y
position.I

Prism 30 Array

I
Output plane at
focus of the Ions
and off axis to
the let's

I
FIG. S. EACH HOLOGRAM CAN $E A FOURIER TRANSFORM HOLOGRAM,

SO THERE IS A COMMON OUTPUT PLANE. THAT PLANE IS
OFF AXIS SO EFFICIENT HOLOGRAMS CAN BE 'ADE. AN
EXAMPLE HOLOGRA1 SELECTION IS SHOWN.
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APPENDIX D

i MISCELLANEOUS APPLICATIONS

1. FREDKIN GATES

£ The initial papers in this field (Appl. Opt. 25, 1604 and SPIE 625,
2) stirred much research and is widely cited. It has led (not sponsored by
ONR) to sub kT operation of optical processors. Our ONR sponsored
work was on various applications such as rapidly programmable switches
(Appl. Opt. 2&, 1032), new configurations (Appl. Opt 26, 3455), and a3 more compact residue arithmetic architecture (Appl. Opt. 26, 3940.

2. PATTERN RECOGNITION

Despite the wonderful invariance properties of prior recognition
masks, they were very difficult to manufacture. We showed how to
simplify mask design and manufacture tremendously (Appl. Opt. 26,
2311; SPIE 613, 260; and Appl. Opt. 27, 2895). This work has led tog much other work (still ongoing under other sponsorship at several
institutions).

I 3. NEURAL NETWORKS

While neural networks are the obvious application of massively
parallel optical interconnections, they present huge accuracy problems.
We showed the first general way to train neural networks for low accuracy
operation (IEEE Trans. Systems, Man, and Cybernetics, accepted). Wethen mapped out a general approach to utilizing the new-found complexity
capability (WNN-AIND 90 AND IJCNN 90).

i 4. FUNDAMENTAL BOUNDS

3 One of the most cited papers from this whole contract is the
demonstration that parallel optical processors have a fundamental speed
limit of about 0.01 GIP (Appl. Opt. 26, 1567).
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IOptical computing and the Fredkin gates

Joseph Shamir, H. John Caulfield, William Micefli, and Robert J. Seymour

£ The use of optics to implement the Boolean logic functions traditionally used in conventional electronic
computing is an active area of optical computing research. Many proposed optical implementations dupi-
cate the configuration of electronic logic gates and hence may not optimally utilize the full benefits of optical
techniques. We present here a new optical gate, the Fredkin gate, which may, in principle, be minimallydissipative i i.e., exhibit reversible logic) and whose response time may be limited in some implementation s

only by the duration of optical pulses (i.e., in the picosecond range). Such gates, which consist of three input
and three output lines, can be programmed to produce a standard set of Boolean functions and appear well
matched to the parallelism of optics. We present here a number of optical implementations of Fredkin gatesand suggest ways of composing their interconnections to achieve combinatorial logic. circulating memories

and generalized interconnects.I
I. Itoducton An overview of the main aspects of the Fredkin gate is

"The energy requirements of basic logic operations given in the next section followed by a variety of pro-
ultimately impose fundamental limits on achievable posed optical implementations. A number of useful
computation rates and all largely independent of de- configurations are discussed in a final section.
vice implementation technology." 1 Part of this ener-
gy consumption is due to the intrinsic nature of the U. Background of the Fredlkn Gates
traditional composition of logic elements. This fact The basic Fredkin gate is defined as a black box
becomes evident if we recall that a conventional logic h e b inary is and ahr ba o
gate has more input lines than output lines. Thus having three binary inputs and three binary outputssome of the information coming into the gate is lost (Fig. 1). The C-input, the control line, determines theand cannot be retrieved. The irreversible nature of operations of the gate on the other two inputs accord-
the gate makes it dissipative not only in information ing to the following rules:
but also in energy. In an effort to overcome these C = C"
limitations, Fredkin and Toffoli2 proposed a new kind if C - 0: A'- A; B'- B: 1)
of logic gate which has the same number of output lines if C - 1: A' - B; B' * A.
as it has input lines. Fredkin gates are capable of It is quite evident that this gate is reversible; i.e., itperforming conventional logic operations while pre- may be run backward to return to the original inputs.
serving all the original information. In contrast to the and, therefore, it is in principle nondissipative. [Theconventional logic gates the Fredkin gates may, in original definitions used in Ref. 2 are the inverse of Eq.principle, be run backward to regenerate the original (1); however, we find this definition more intuitive andinput signals. more suitable for optical implementation.]The purpose of this work is to introduce the optical Using the three inputs and the three outputs of the
Fredkin gate, illustrate its programmability, and sug- Fredkin gate, one may implement the traditional logic
gest it as a basic building block of an optical computer. gates that usually have two input lines and one output

line. To make the comparison easier, in the examples
of Fig. 2 we leave the lines corresponding to the con-i__ventional gates straight while the other lines are shown

Robert Seymour is with GTE Laboratories, Inc., 40 Sylvan Road, bent. In Fig. 2(a) an AND gate is implemented keeping
Waltham. Massachusetts 02254; W Micelli is with Naval Ocean the a input at the 0 level and obtaining the requiredSystems Center. San Diego. California 92152; the other authors are output of the A' line. Unlike conventional gates. wewith University of Alabama in Huntsville. Center for Applied Op- obtain two additional outputs that we may utilize or
tics. Huntsville. Alabama 35899. ignore. In a similar way, one possible implementation

Received I October 1985. of an OR gate is shown in Fig. 2(b). It can be easily
0003-6935/86/I01604.04512.00/0. shown that any other function, such as NOT. FAN-OUT.S1986 Optical Society of America. FAN-IN, and FLIP-FLOPS, is also easily implemented.
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Fig. 1. Fredkin gate (see also text).

Fig Aciusooptic gate.

1 is required between the A and B lines. The main
advantage of this gate is its relative simplicity, while its
disadvantage ia the different nature of the C-line thatI also changes level during transition through a gate (i.e.,
there is a lower light intensity in C' than in C; this
effect may, however, be corrected by incorporating anI ' "amplifying medium on the line).

Fig. 2. Logic gates implemented by the use of Fredkin gates: (a)an
AND gate; (b) oft gate. B. AcouStooptic Gate

In Fig. 4 we show a schematic diagram of the acous-
tooptic gate: The two input lines are laser beamsIincident on an acoustooptic deflector (either bulk or
integrated SAW) at the Bragg angle. If there is no
acoustic signal (C - 0), the two beams continue unaf-
fected (A' and B'), while if C is present each beam is
deflected into the other channel. This is also a simple

1. A' gate, but here too one has a C-line which is basically
different in nature than the other two lines. Never-

Fig. 3. Polarization switching gate. theless, this kind of gate can be easily cascaded and
integrated. For example, a single acoustic pulse may

In the next section we discuss a number of ways to activate many gates as it travels along the system.
implement the Fredkin gate by optical and electroop- Of course, any 100% efficient gateable diffractor will
tical means. suffice. Such devices are possible in integrated optics.

M. Optical IMpewntMons of the Frkicn Gate C. Photorefactive Gate
For applications in logic networks one is usually The photorefractive gate based on four-wave mixing

interested in logic gates containing nonlinear bistable is an all optical gate with one of its tentative implemen-

elements. The basic configuration of a Fredkin gate, tations illustrated in Fig. 5. In this case the C-line
however, is not restricted to digital signals, and, in constitutes the two pump beams. The inputs A and B
principle, one may use these gates for processing ana- are transmitted if C is absent and phase-conjugated
log signals as well. In the examples that follow the when the pump is present resulting in switching be-
nature of the control signal will determine the actual tween the outputs.
response of the gate. . Wavguide or Coupler

A. Poaization Switching Gate In optical communication and integrated optical
A polarization switching gate is shown in Fig. 3. The systems a modulated waveguide or fiber coupler may

a and b lines correspond to two orthogonal polariza- serve as a Fredkin gate. Two general classes of thisIa
tions of a light beam (or a waveguide channel of an kind of gate may be implemented. The out-of-plane
integrated optical system) traversing an electrooptic control is shown schematically in Fig. 6(a) and the
modulator that rotates both polarizations by 90* when in-plane control with one possibility depicted is Fig.
activated. The activation is induced by the C-line 6(b). A number of workers have already implemented
either by a direct electronic pulse or, as shown in the the electronically addressed coupler4.5 that may serve
figure, by an optical signal transduced to an electronic as a Fredkin gate with an electronic C-input. To sym-
signal using a photodetector (photoconductor or pho- metrize the system one may use photodetection com-
todiode-amplifier combination). Polarizing beam bined with the electrooptic coupler to facilitate optical
splitters may be applied whenever a spatial separation control. A more advanced technology would be the

3 15 May 1986 / Vol. 25, No. 10 / APPLIED OPTICS 1605
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D We demonstrate the applicability of these new gates
by proposing, in addition to the conventional logic

A gates, two very useful devices that incorporate arrays
of the waveguide gates shown in Fig. 6.

8.S A. OptiAi Crossbar
The gate array of Fig. 7 may be constructed of gates

of the type depicted in Fig. 6(a) or the type in Fig. 6(b).
.RIn the first case each gate may be accessed randomly

,from above by an electric field or by light, depending

on the specific device used. As we are dealing witl
AS optical computing we might prefer activation by lightIAf such as a holographic coupler8 or fiber coupler. Wit-

proper addressing each input line can be coupled tc
Fig.5. Photorefractive gate using four-wave mixing in photorefrac- each output line. This system may prove to be ar
tive material (P.R). Beam splitters (B.S) are needed for output extremely fast and efficient crossbar or optical switch

coupling, board. The in-plane addressing of Fig. 6(b) is applica
ble if one desires to activate a whole column together

A C A' At first sight it appears that this kind of addressing i.,
S--not suitable for random access; however, with very fas

pulses this also becomes feasible.

B. Tapped Delay Une
The basic configuration of Fig. 8(a) is a tapped dela,

line. A fiber ring may be utilized for long delays, whih
for very short delays one may use waveguide rings, th(

CA A' C feasibility of which has also been demonstrated. 9".
....... Here too the addressing may be of the first type [Fig

6(a)] or of the second type [Fig. 6(b)]. Such a setul
may be used to delay all the energy in a pulse or jus

- A' part of it to produce a pulse train from a single initiaI pulse. A slight modification of the system as illustrat
Fig. 6. Waveguide coupler gate. The coupling region activated by ed in Fig. 8(b) may be used to reverse the direction o
line C is a photorefractive or other nonlinear material or electrooptic signal flow resulting in a true reversible Fred kin gate

material: (a) out-of-plane control; (b) in-plane control. In the future, an optical memory block may resembl,
the array depicted in Fig. 8(c). This seems to be

use of photorefractive material for direct optical con- short-term memory, but with the integration of ampli
trol of the coupling constant. The example in Fig. 6(b) fying medium it may serve also as a long-term memory
is a waveguide coupler incorporating highly anisotro-
pic guides containing nonlinear material. The two V. DScusIon
coupling waves (A and B) are "ntroduced with the same Initial approaches to optical computing have tende(
polarization so that they can couple while the control to duplicate the evolution of combinatorial logic im
signal C is orthogonally polarized so that its power is plemented in semiconductor microelectronics
used to activate the coupling between the A and B Present configurations of semiconductor logic gate
channels, but it does not couple itself into the other are well suited for electronic computing but may not b,
guide.6  the best choice for optically implemented logic. I

3 Fig. 7. Integrated optical crosbar. The elliptic regions are the nonlinear coupling switches.

1606 APPLIED OPTICS / Vol. 25. No. 10 / 15 May 1986
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3 Fig. 8. Tapped delay line:
(a) basic configuration;

(b) reversing modification;3 (c) memory array.

I this work we have resurrected the concept of reversible 3. See, for example, R. A. Fisher, Ed., Optical Phase Conjugation

logic, illustrated various optical implementations of (Academic, New York, 1983).
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and suggest their evaluation as a basic building block Technical Digest, Topical Meeting on Integrated and Guided-
for optical computers. The various implementations Wave Optics (Optical Society of America, Washington, DC,
illustrated here are intended to illustrate the potential 1982), paper ThD2.
of this approach; future work will elaborate on specific 6. R. A. Forber and E. Marom, "Optimization of Symmetric Zero-
higher-order logical functions. Gap Dielectric Couplers for Large Switch-Array Applications."
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Optical Fredkin Gate

Joseph Shamir and H. John Caulfield
Center for Applied Optics, University of Alabama in Huntsville

Huntsville, Alabama 35899

William Miceli
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m Abstract

Much work is being done toward the optical implementation of traditional electronic processing and
computing methods. Many of the proposed methods may not be the optimal way to utilize the benefits of opti-
cal techniques. We introduce here a new optical gate - the Fredkln gate - that is in principle minimally
dissipative and its response time in some implementations may be limited only by the duration of optical
pulses (i.e. in the subpicosecond range). To indicate the viability of this novel approach, a number of
optical implementations of Fredkin gates with some interesting applications are proposed.

3 Introduction

One of the limitations imposed on increasing computation power, be it electronic or optic, stems from
the large amount of energy that needs to be dissipated during computer operation I . Part of this energy is
due to the intrinsic nature of the traditional logic elements. This fact becomes evident if we recall that
a conventional logic gate has more input lines than output lines. Thus some of the information coming into
the gate is lost and cannot be retrieved. The irreversible nature of the gate makes it dissipative not only
in information but also in energy. In an effort to overcome these limitations, Fredkin proposed a new kind
of logic gate which has the same number of output lines as it has input lines. Fredkln gates are capable
of performing conventional logic operations while preserving all the original information. In contrast to
the conventional logic gates the Fredkin gates may, in principle, be run backwards to regenerate the (rir.i-nal input signals.

The purpose of this work is to introduce the optical Fredkln gate which may become one of the basic
building blocks of an optical computer. An overview of the main aspects of the Fredkin gate is given in
the next section, followed by a variety of proposed optical implementations. A number of use applicationsare discussed in a final section.

3 Background on the Fredkin Gate

The basic Fredkin gate is defined as a black box having three binary inputs and three binary outputs
(Figure 1). The C-Input - the control line, determines the operation of the gate on the other two inputs
according the following rules:

IF C s O: A' s A; 6'-B; (1)3 IF C - 1: A' - B; B' - A;

C cl

I A _ _ _ _A'

SB B'

Figure 1.

It is quite evident that this gate is reversible, i.e. it may be run backward to return to the original
inputs and therefore It is in principle non-dissipative. (The original definitions used in Ref. 2 are the
inverse of Eq. (1); however we find this definition more intuitive and more suitable for optical implementa-tion. )
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Using the three inputs and the three outputs of the Fredkln gate one may implement the traditional
logic gates that usually have two input lines and one output line. To make the comparison easier, in the
examples of Fig. 2 we leave the lines corresponding to the conventional gates straight while the other lines
are shown bent. In Figure 2a an AND gate is Implemented keeping the A input at the 0 level obtaining the
required output on the A; line. Unlike conventional gates, we obtain two additional outputs that we may

0

I a
a. b (a)

*alb a

Ib a+b (b

3 a+b

Figure 2.

m utilize or ignore. In a similar way, one possible implementation of an OR gate is shown in Figure 2b. It
can be easily shown that any other function, such as NOT, FAN-OUT, FAN-IN and FLIP-FLOPs are also easily
implemented. In the next section we discuss a number of ways to implement the Fredkin gate by optical and3 electra-optical moans.

Optical Implementations of the Fredkin Gate

I For applications in logic networks one is usually interested in logic gates containing nonlinear,
bistable elements. The basic configuration of a Fredkln gate, however, is not restricted to digital signals
and, in principle, one nay use these gates for processing analog signals as well. In the exampl:s that
follow the nature of the control signal will determine the actual response of the gate.

A polarization switchin ate is shown in Figure 3. The A and B lines correspond to two orthogonal
polarizatio-ns ofa cam or a wavegulde channel of an integrate/ optical system) traversing

B.S.

I _ ____ _I

mA B B1 A'

E.O.

Figure 3.I
an electro-optic modulAtor that rotates both polarizations by 90* when activated. The activation is induced
by a direct electronic pulse or, as shown in the figure, by an optical signal transduced to an electrical
signal using a photodetector (Photoconductor or photodlode-amplifier combination). Polarizing beam-splitters
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may be applied whenever a spatial separation is required between the A and B lines. The main advantage of
this gate is its relative simplicity while its disadvantage is the different nature of the C-line that
also changes level during transition throuqh a oate (i.e. there is a lower light intensity in C' than in C.
This effect may, however, be corrected by incorporating an amplifying medium on the line).

In Figure 4 we show a schematic diagram of the acousto-optic ate: The two input lines are laser beams
incident on an acousto-optic deflector (either bulk or integrated SAW) at the Bragg angle. If there is no
acoustic signal (C = 0), the two beams continue unaffected (A' and B') while if C is present each beam is
deflected into the other channel. This is also a simple gate but, here too, one has a C line which is basically
basically different in nature than the other two lines. Nevertheless this kind of gate can be easily cas-
caded and integrated. For example, a single acoustic pulse may activate many gates as it travels alone' the
system.

C',A

Figure 4.

The Ohotorefractive gate, based on four-wave-mixing3 is an all optical oate with one of its tentative
implemen -- os illustrated in Figure 5. In this case the C-line constitutes the two pump beams. The
inputs A and are transmitted if C is absent and phase-conjugated whe the nump is present resulting in a
switching between the outputs.

B'

CY
A /

B.S.

I 6.5. P.R.,

C

5 A' B B

5 Fir!,,e 5.

In optical cor.inunication and integrated optical systems a modulated waveguide or fiber coupler may serve

as a Fredkin gate. T ,!o general classes of this kind of gates may be implemented. The ou ane control,
shown schematically in Figure 6a, and the inplane control with one possibility detigted in Figure. Gb. A
number of workers have already implemented the electronically addressed coupler , that may serve as a Fred-
kin gate with an electronic C-input. To synmetrize the system one may use photodetection combined with
the electro-optic coupler to facilitate optical control. A more advanced technology would be the use of
photorefractive material for direct optical control of the coupling constant. The example in (b) is a wave-
guide coupler incornorating highly anisotropic guides containing nonlinear material. The two coupling waves
(A and B) are introduced with the same polarization so that they can couple while the control signal, C, Is
orthogonally polarized in such a way that its power is used to activate the coupling between the A and B
channels but it does not couple itself into the other guide6 .
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m Proposed Devices Incorporating Fredkin "ates

We demonstrate the applicability of these new gates by proposing, in addition to the conventional logic

gates, two very useful devices that incorporate arrays of the wave quide hates shorn in Figure 6.

A A'

(a)

I 
Figure 6 .R .

c A
C - - - - A' C'

S......... (b)

N.L

Figure 6.

The optical crossbar. The gate array of Figure 7 may be constructed of gates of the type depicted in
Figure a-or t e type o-f-5b. In the first case each gate may be accessed randomly from above by an electric
field or by light, depending on the specific device used, As we are dealing with optical computing we might
prefer activation by light such as a holographic coupler' or fiber coupler. With proper addressing each
input line. This systen mnay prove to be an extremely fast and efficient crossbar or optical switchboard.
The in-place addressing of Figure 6b is applicable if one desires to activate a whole column together. At
first sight it appears that this kind of addressing is not suitable for random access; however with very
fast pulses this also becomes feasible.

I0o
In.3... .. Out

3 Figure 7.

The taped delay line. The basic configuration of Figure 8a is a tapped delay line. A fiber ring

may be utT T--rongo elays while for very short delays one may use waveguide rings the feasibility of
which has also been demonstrated9 ,10 . Here too, the addressing may be of the first type (Figure 6a or of
the second (Figure 6b). Such a set may be used to delay all the energy in a pulse or just part of it to
produce a pulse train from a singl itial pulse. A slight modification of the system as illustrated in
Figure 8b may be used to reverse the direction of signal flow resulting in a true reversible Fredkin gate.
In the future, an optical memory block may resemble the array depicted in Figure 8c. This seems to be a short
term memory, but with the integration of amplifying medium it may serve also as a long-term memory.

I
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A
3 -

Figure 8(a)

3 Figure 8 (b)

3 Figure 8(c)

Discussion

Conventional approaches to optical computing followed the lines nut forward by workers with electronic
systems. Traditional logic gates are well suited for electronic computing but may not be the best choice
for optical Processors. In this work we indicated that one should also consider different imnletentations
for optical cornouting systems with one very promising possibility being the Fredkin gate. These pates have
many simple optical implementations and may prove to be very fast and energy efficient. The various imple-
mentations and apolications given here are just samples to indicate the diverse possibilities available.
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High-efficiency rapidly programmable optical
interconnections

Joseph Shamir and H. John CaulfieldI
An array of optical Fredkin gates implemented by optically controlled weveguide couplers is showi
constitute a very efficient and versatile optical interconnection network with parallel addressing capabilit
The characteristics of the array are analyzed using linear algebra to indicate interconnect progpamn
procedures. In terms of SNR this network is estimated to be comparable with previously proposed archi
tures. However, from many other aspects (light transmission efficiency, number of switching eleme

i speed, and fault tolerance) it has significant advantages.

I. roduction gate may be assembled as a useful array, reference h
Optical interconnects were initially investigated for will be made to the most promising one, the optici

application in integrated electronic processors."15 The addressed waveguide coupler array.
demand for highly efficient and fast optical intercon- Most of the presently demonstrated switcha
nects or programmable crossbars is now increasing waveguide couplers employ the electrooptic effect
with the extensive progress made in the applications of voltage control,'1 - 14 but direct light-addressa
optical fiber communication networks and the expect- switches are already emerging.5, 6  For our purp
ed developments in optical computing. In a recent we are interested in direct lIght activated coupit
work6 the benefits of the optical Fredkin gate were However, a photodetector array connected to an el
discussed, and several optical implementations were trooptic switching array will be also quite efficient w
proposed. It was also pointed out there that an array its speed limited only by detector delays.' 7

of these gates may function as an optically or electroni- In the next section we describe the architecture
cally addressed optical interconnection network. The the Fredkin gate network with a physical approach
array of switching elements building up this network the addressing algorithm. The ideal gate array is
may be addressed in paralel leading to a very fast, scribed in Sec. III by a linear algebraic approach EU light-efficient, and fully programmable device. In ploying a unitary matrix group. The physical lim
principle, the operating speed of the network will be tions of a real system is discussed in Sec. IV taking i
limited by the addressing time, and that may be very account losses and crosstalk to evaluate an expecI short if a page-oriented holographic memory7 8 is em- SNR for an actual device. The implementation
ployed. In such a memory bank each useful switching optical crossbars is addressed in Sec. V with a gene
pattern is stored as a hologram that may be addressed discussion following in Sec. VI.
by a deflected laser beam.9"10 Nanosecond addressing N FrodCi Gat@ Entercoriction Network
time may be possible with an array of 1024 X 1024
holograms. The basic Fredkin gate is defined as a black I

In the present work we analyze the operation of a having three binary inputs and three binary outp
general Fredkin gate array interconnection network. (Fig. 1). The C-input, control line, determines ope
Although any optical implementation of the Fredkin tion of the gate on the other two inputs according to

following rules:
C -C'

ifC=O: A'-A; B'=B;
ifC-1: A':B; B'-A.

The authors are with Center for Applied Optics, University of It is evident that this gate is reversible; i.e., it ma)
Alabama in Huntsville. Huntsville, Alabama 35899. run backward to return to the original inputs, a

Received 11 October 1986. therefore, it can be nondissipative, at least in princil
0003-6935/87/061032-06$02.00/0. Of the various optical implementations proposed
O 1987 Optical Society of America. Ref. 6 we are interested here in the waveguide coul
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C' shown in Fig. 2, although any other optical Fredkin
gate is applicable. The two inputs, A and B, are

A switched when the interaction region I is activated by
the control signal C. The most efficient construction

B- B' would involve a photorefractive interaction region di.
rectly activated by light. However, the electrooptic

Fig. I. Frodkin gate. effect may also be used employing an amplified signal
from a photodetector receiving the C-input.

The waveguide coupler Fredkin gate of Fig. 2 is our
basic building block for constructing a general inter-
connection network. Figure 3 represents the 4-input

A' and 4-output network. Proceeding from left to right
A we encounter four layers of interaction regions (num-

bered 1-4) with each such region activated by an inci-
B' dent control signal. Checking all possible switchingB combinations one can show that with this arrangement

any input signal ai (i - 1,2,3,4) may be coupled into any
C output port b. In other words, all twenty-four permu-

tations are possible with four layers of switches, six
switches all together. It is interesting to note that

Waveguide coupler implementation of the Fredkin gate. there are forty possible switching states. Thus some
he interaction region where coupling is switched ON or OFF. of them are redundant with respect to the output con-

figuration. As will be indicated, this redundancy is
very useful for fault tolerant operation.

Using induction one may generalize the configura-
tion assuming that for n - 2N channels one needs n

4YER NO. 3 4 interaction layers. If we add two more input channels,
a,+, and a,+2, as in Fig. 4, we need two more couplersI (the dotted ones in the figure) to switch either of the
two new signals into the old array. To make all permu-
tations possible the additional layers should be filled
out completely as will be indicated in the mathemati-
cal description of the next section. We see that our

--.-. .... b 1 n x n network needs n layers with alternating n/2 and
. /- -. n - 1 switches each. Thus the complete array needs

b2  n(n - 1)/2 switches to establish all possible intercon-

b nections, that is, less than half of the n2 elements
3 required by most conventional networks.

I 4  This whole switching array may be considered as a
generalized n-dimensional Fredkin gate: If all control

Fig. 3. Four-channel array with four switching layers. inputs are in the 0 state (all switching elements are

I

Ii.4 -hnelarywt h

*I* addition of two more.

a2

15 March 1987 / Vol. 26, No. 6 / APPLIED OPTICS 1033
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OFF) we obtain bi - ai for all i, while a complete inver- T - Q.P- -- .. Q2P1.
sion, i.e., b, w a,, b,_ 1 - a2, etc., is obtained with all where the subscripts denote layer numbers.
control signals in the 1 state (all switches are ON). Equation (6) is a simple mathematical relation th
M. Matlhmatical Analysis describes any possible switching state of the comple

For a mathematical analysis we return to our basic system. To solve the inverse problem, i.e., determi

element, the waveguide coupler Fredkin gate of Fig. 2, the switching state for a given interconnection, t)

and represent the input and output channels by vec- requirement is not much more complicated. Sincet)
tore a and b, respectively. The transformation of the n × n matrix T must have a single element with valuf
vtor a ano bhe r ectively.aTheetransformationyof the in each row and each column with the rest of t]
vector a into the vector b may be implemented by a 2 X elements having the value 0, it is a simple matter
2 unitary matrix F(C), where the parameter C may write down this matrix for any interconnection r

assume the two control values 0 and 1: quired. The next step is a decomposition of this m

F(0) FM -[ 1]. (2) trx into n matrices P and Q. This can be done easil
since these matrices are the inverse of themselve

The two possible transformations attainable with this Thus one can take the T matrix and start multiplyi

device may thus be written in the matrix form: it by the P and Q matrices until it reduces to the un
matrix. If we multiply Eq. (6) from the left by Q, th

b - F(C)a. (3) matrix is eliminated from the right-hand side of tl

This matrix formalism is easily extendable to a general equation. The procedure may now go on with tl

n-channel device: We observe that each interaction matrix P,_1 etc. until the unit matrix is obtained:

region in a gate layer (see Fig. 3) involves only switch- PIQ2 ... P- 1Q.T - I, (6
ing between adjacent channels. Thus, if we describe
the input to this layer by the n-element vector a, it will where I is the unit matrix. Physically, the two equ;
be transformed by a block-diagonal unitary matrix tions (6) demonstrate the reciprocity property ofT y a b - nondissipative optical system.

f0 0 ... 1 0 0 0 ... We clarifythe procedure using the six-channel arre
L...Jo 0 i... 0 0F 0 ... illustrated in Fig. 5 with an arbitrarily chosen intercoi
0 0 F 0 0 ... 0 0 0 ... nection pattern indicated on the right-hand side. I
i 0o o o o o F~o 0...write down the transfer matrix we observe that a3 mw,

be transferred to the first channel. Thus the first ro

Q'[ should have its unit element in the third place. Sim
1- 0 alarily, the second row will have its unit element in t.
o-" L- 0 second column and so on until we construct the who;
0 0oj ... 0 0 1 matrix:

(4) 0 0 1 0 0 01

where P corresponds to an odd numbered layer, while 0 0 0001
Q is a matrix corresponding to an even numbered layer. 1 0 0 0 0 0Thus one may describe the complete system transfor- 0 0 0 1o

mation by a product of these matrices. The first ma- o 0 0 1 _J
trix to operate on the input vector will be PI, the Our objective now is to find consecutive P and Q matr
second matrix will be Q2, and the final one will be Q., ces that will translate all the unit elements into th
and we may write down the complete transformation matrix diagonal. To be most efficient in this proce
to be the relation dure we observe that the units in rows 3 and 4 are at th

b - Ta, (5) largest distance from the diagonal, and they can bot

where the transfer matrix is

I a bl = '3

a2  b2 * 82

a 4  b 4 'al

a 5 ' a4

a b6 .a 5 Fig. 5. Siz-channel array with
6 selected interconnections.
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brought closer by interchanging them. This goal most difficult transformations, i.e., a complete inver-
ay be attained by the P matrix (a Q matrix will do no sion with input vector,ood at this stage): =(zxo.

1o at thi stage) For this transformation all switching elements are in

UP a 0 0 o the ON state. Thus we have to substitute F(1) for all
00 1 0 0 0 the diagonal blocks in four matrices of the form of Eq.

0 0 0 0 1 0(4). Performing the matrix multiplications and oper-b 0 o 0 0 1 ating on the above input vector yield the output vector

here we also switched between the first two channels b-Y' + ( - 0) + -r(l - 6)12Y +(I 6)2+ -5)(1 + 2-0) 1
a ace the unit of the first row is also far from the 4 +y(1-6)(1+-)(2-6)+2y'(1-6)+ G )3

agonaL Proceeding in this manner, we have 1 +Y(1 - 6)2(2 + y) + ( - 6)[2-y3 + ( - 5)9
• (I- 5)3 +Y.(1- 6) 2(2Y+1) +Y-(1 -6)l(- 6) 2+y2 +-r

1 00 0 00 0 100 001 (9)
0 001 0 00 1 00 0*0 01
0 1 0 0 0 0 0 0 1 0 0 0 The ideal transformation would give b, - 0 with the

"|0 0 0 0 1 0 P 0" 0 0 1 0 0 other three elements I. Thus we maydefine a SNR by
0 0 0 1 0 0 0 0 0 1 the relationblbgiving

m 0 0 0 0 _ U 0 0 0 1 _J S R -(I_5 )1 +  f ( 1 _
-

6)2(2 - + 1) +  -(1 _- ) [ (
l
1 _  )2 +

_y
2 +  

-
Y

hese three matrices complete the task. Thus, for this -1- + (1 - ) + y(I - 5)12y + (1 - 5)2 + (1 - 6)(1 + 2Y)J
me, only three layers are required to perform the (10)
meration. This again can be deduced by observing Retaining only first-order terms we obtain
iat the transfer matrix has its unit elements at a
istance from the diagonal not exceeding three posi- SNR = -.

ons. The hatched interaction layers in Fig. 5 desig- 3(11)
ate the ON elements. This specific example demon- This result could be anticipated since there are three
zated also the property of redundancy that may lead switching elements where a fraction of the unit signal
) fault tolerance when production limitations are con- could leak into the zero channel, while the losses from
dered. the unit carrying channels are compensated to first
All the matrices involved until now are unitary ma- order by leakage from the other large-signal channels.

-ices as we are dealing with ideal nondissipative sys- Again, by induction, one may generalize this first-
3ms. In the next section we modify the formalism to order approximation to n channels leading to an ex-
iclude loses and leaky switching elements as encoun- pected SNR for a physical network given by
red in practice. 1-6 (SNR- m - (12)

I. Real Networks (n - l)-(

A real physical network cannot be described by the Interpreting some experimental results' 2- 1" one may
bove unitary matrices. To take into account losses assume the attainable values, 1 - 5 - 0.95 and -y
nd crosstalk in the nonideal switching elements, the 0.001 yielding an SNR (>2) up to 500 channels.
asic switching matrix of Eq. (2) should be modified.
'he two states of a real Fredkin gate may thus be V. Of Frecn Gate sbar

epresented by the two modified matrices: -The major function performed by the optical net-
- Y 1 works described in this work is that of a cross-connec-

F() -[ 1 - 1 - Y ' (8) tor, i.e., the capability to connect any input channel to
J 1 1 'Y any output channel. In previously proposed opticalIhere a is the loss from the unswitched channel in- crossbars the light input to each channel is spread over

luding actual loss and leakage 0 into the second chan- all the output channels, and the required connections
el, and 6 is the uncoupled fraction into the switched are obtained by blocking the unwanted connections.
hannel with -f the fraction of the signal that leaks From the point of view of the optical design engineer
hrough undeflected. For simplicity a complete sym. these are blocking crossbars that, for an n-channel
oetry is assumed between the two coupled channels. system, are only 1/n as light efficient as our nonblock-
mor a working system one naturally must require that ing network, where, in an ideal device, all the incident
t, 0, -, 6, << 1. Integrating this gate into an intercon- light is utilized for signal transmission. Also, as point-
iection array returns us to the block-diagonal matrices ed out earlier, n(n - 1)/2 switching elements are ade-
if Eq. (4), but now they are not unitary as they include quate to perform all interconnections as opposed to n2

he lossy matrices [Eq. (9)] instead of the ideal ones of elements in the previous optical crossbars. However,
q. (2). our interconnection network is not completely equiva-
To investigate the effects of the deteriorating pa- lent to a crossbar.

ameters we return to the four-channel system of Fig. 4 From the point of view of the network engineer 8Ind construct the transformation matrix for one of the those previously proposed crossbars are nonblocking

15 Mmrch 1987 / Vol. 26.o. 6 / APPLIED OPTICS 1035I
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Fig. 6. Nonblocking optical crossbar containing two parallel net-
works.I

in the strict sense in that any idle pair of terminals may and, in most cases, it needs only half of the activ

be connected without disturbing already established elements of any other configuration.

connections. In this sense our interconnector is not Being nonblocking with respect to light manipula

crossbar because one may have to reprogram the whole tion results in additional benefits: All the light energ
array to change even a single connection. There is at coupled into the system is being extracted as signal

larray tocnge ssible sngleonntion .for o e at except for the inevitable losses encountered in an-
least one possible solution for the problem that eea- physical system. Furthermore, if a defective switcl
ploys two identical networks as shown in Fig. 6. The n exists in the array, the signal will in most cases bcontrolled directional couplers on the left-hand side transmitted without deflection. This characteristic
are used to switch the whole input pattern between the together with the implicit redundancy in the systerr
two networks. If, for example, a new connection is may be utilized for fault tolerant operation. For ex
required while information flow is in progress through ample, assume that there is an anticipated fraction e c
network I, network II may be programmed to support faulty switching elements introduced during the man
the complete new connection pattern, and then the fau ing eleeof n n-channel dring To avoi
inputs may be switched over to network II. In the next uthefaulty elements s a simple matterrayo make i
occasion the inputs will be switched back to network I. array that has n(l + e) channels (and switching layers
This will be a nonblocking crossbar from the point of aa than e hal s w layers
view of the optical design engineer as well as from the and then ignore the faulty layers luring programming

point of view of the network engineer. Switching be- The introduction of additional channels can also sup

tween the two networks will not disturb information port the solution of problems such as FAN-OUT ano

i flow, since during the short transition time both net- Considering the problem of signal deterioration
works will transmit the signals (in complementary was shown that the Fredkin gate network should per

amounts of power) that will be combined by the con- form comparable with an optically blocking networl

stant directional couplers of the proper output chan- that has a constant SNR similar to the worst case SNI
nels on the right-hand-side of the system. It is inter- in the present system.

esting to point out that the achievement of a strictly In conclusion, one may state that the optical Fredk

nonblocking system was at the expense of additional Incclsonemytaehtteopil rdL
switching elements returning to the total of n2. gate array may turn out to become the best solution fo

the implementation of optical interconnections. Re
VI. Di1cuselan calling the fact that these gates can also perform logi

The optical Fredkin gate was shown to be an excel- operations6 they should be seriously considered as th

lent Building block for construction of a programma- basic building blocks for a future digital optical co
ble optical interconnection array. Such an array can puter.
perform all interconnection requirements, such as the This work was partially supported by the Office o
function of a crossbar or perfect shuffle. The overall Naval Research under contract N000014-86-KI performance should be significantly better than any 0591.
other approach proposed until now. Using page ori- Joseph Shamir is on leave from the Department c
ented holographic memories this will be the fastest Electrical Engineering of the Technion-Israel Insti
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I Three-dimensional optical interconnection gate array

Joseph ShamirU
A recently proposed planar Fredkin gate array for optical interconnections is extended here into a 3-D array
that can be implemented using ferroelectric liquid crystal spatial light modulators. Operating as polarization
gates these modulators are efficient and can be incorporated into high performance interconnection networks.
Some advantages of the new architecture are discussed and performance characteristics are estimated.

1 Introduction with respective input signals, a, (i - 1 ... 7), seven
One of the most promising uses of optics in comput- outputs, bi, and seven layers of couplers (switches) that

ing and communications is the implementation of are either OFF or ON. When a switch is in the OFF state
complicated interconnections. For this application, the signal in each channel is transmitted through the
planar architectures of Fredkin gate arrays construct- coupling region and remains in its original channel.
ed of optical waveguide couplers were recently investi- With the switch in the ON state the signals are inter-
gated.' This work demonstrated that these arrays are changed between adjacent channels. It was shown in
efficient with respect to the utilization of light power Ref. 1 that, for such a configuration containing r ?han-
and they are rapidly programmable. In addition to nels (i - ,.. .n), one may obtain bi with all the possible
their use in optical interconnection networks these permutations of ai using n switching layers with a total
arrays can also be employed in various processing op- numberofn(n - 1)/2switches. Ina practical situation
erations such as residue arithmetics, 2 logic gate arrays, where the switching ilements are not ideal one may
and variable delay lines. The planar configuration is assign some average parameter, -y, for the fraction of
attractive for applications in conjunction with inte- the signal that leaks through the coupler into the un-
grated optical and electronic devices; however the ad- wanted channel and obtain an approximate value! for
vantages of the 2-D parallelism possible with optical the signal-to-noise ratio (SNR) at the output:
systems were not fully exploited. In the present work 1 - - 1)
we explore the performance of 3-D architectures and (n - 1)-Y
indicate their implementation using polarization
Fredkin gate arrays. Ill. Three-Dimensional Arrays
. PTo improve the performance of the system by ex-

II. Planar lnterconection Network ploiting the 2-D capabilities of an optical system one
We start with a short review of the planar intercon- may stack m-planar arrays (such as in Fig. 1), each of n

nection array of n channels that was investigated in channels, into a 3-D architecture [Fig. 2(a)]. The
Ref. 1. One possible implementation of such an array switching layers are now arranged as matrices overemploys controllable waveguide couplers as represent- transversal planes but each planar array is indepen-ed schematically in Fig. 1 for a seven-channel wave- dent of the others. Extending the earlier analysis, it is
guideploy ntb aveguide erare seven channels easy to see that for the stack of n-channel arrays one
gnels n-switching layers to perform annpossible r o

needs nsiciglyrtoprrmall posbehori-

zontal interconnections. To make all vertical connec-
tions available too, we augment the configuration by n
vertically oriented planar arrays [Fig. 2(b)] of m chan-nels each, containing rn-switching layers. Thus a corn-

When this work was done the author was with University of plete interconnection array cascade of Figs. 2(a) and
Alabama in Huntsville. Center for Applied Optics. Huntsville. Ala- (bne ctin ay e of (n d
bama 35899; he has now returned to Technion-[srael Institute of )] can be implemented using m layers of n(n - 1)/2
Technology. Department of Electrical Engineering, Haifa 32000, switching elements and n layers with m(m - )/2
Israel. switching elements summing up to a total of

Received 30 January 1987. N , mn(n - t)/2 + nmrnm - )/2 = rnn(n + m - 2)/2 (2)
0003-6935/87/163455-0302.00/0.

1987 Optical Society of America. switching elements. With a square array of n ' chan-
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I Fig. 1. Seven-channel Planar interconnection array.
Fig. 3. Section of the ferroelectric interconnection arra F'
ferroelectric gate array; W, Wollaston prisms- Polarizatn .

tar t ,t .4 Lc',A;. Layer various channels is indicated.

kin gates. In these gates the switching operation ro.
tates the polarization of an incident beam by 90a If
employed as a logic gate one polarization is defined as a

W logic i while the orthogonal polarization is defined as a
logic 0. In this work we use the Fredkin gate defini.
tion: the two orthogonal polarizations represent the
two separate input channels to the gate while the
switching operation interchanges the two channels.
In each of these channels the presence or absence of a
signal indicates the logic I and 0, respectively.

Polarization Fredkin gates may be implemented by
various electrooptic or magnetooptic modulators. For
the present purpose, the most promising device is the
ferroelectric liquid crystal spatial light modulator-',I (FLC) that already exists in the form of large arrays.
Each pixel of the FLC can be addressed separately to
switch ON OFF a halfwave retardation, thus per-

Fig. 2. (a) Stack of m planar arrays of n horizontal channels each. forming the requirement of a polarization FredkinF () Stack of n planar arrays of n vertical channels each. gate.
The top view of a section of the proposed polariza-

tion interconnection array is shown schematically in

nels (m - n) one needs n2(n - 1) switching elements Fig. 3. A suitably designed Wollaston prism is em-ployed to combine two channels into a single gate
compared with n4 of a regular planar crossbar. It pledeto cie Atwo cannes intouahinge gatea
should be pointed out, however, that FAN-IN and FAN- element(pixel). After transmission through the gate a
OUT operations with this simple configuration are pos- second, similar Wollaston prism separates the two po.
sible only at the expense of additional channels astwoindicated in Ref. 2. adjacent gates in the next stage that is shifted trans-

Regarding the SNR, one may repeat the calcula- versally by half of the distance between pixels. The
Rtions that lead to Eq. (1) or just observe that, to first layout of each horizontal plane resembles the planar

order, it is inversely proportional to the number of waveguide array of Fig. 1, and each FLC sandwiched
switching dyers. Thus in our case we may write, in- between two Wollaston prisms performs the function
stead of Eq. (1), of a 2-D coupling array as required in Fig. 2(a). Using

FLCs in arrays of n x m we may implement the com-
SNR - (3) plete interconnection network with 2n stages (each

(n + m - I)f pixel in the FLC represents two signal channels) per-
which is an appreciable improvement compared with forming the horizontal interconnection between the 2n
the planar array where for V. (-n x m in the present channels similar to Fig. 2(a). To implement the verti-
case) channels the sum in the denominator would have cal interconnections required in the architecture of
to be replaced by the product (n X m). Waveguide Fig. 2(b) one needs 2m additional stages with the Wol-
arrays as described in Ref. I are ideal for planar net- laston prisms rotated by 900.
works; however, for this 3-D architecture different To estimate the SNR of an interconnection network
kinds of device may prove more useful. one may use the reported switching contrast ratio of

-100:1. Deducing from this a signal leakage value of
IV. Polarization Gate Arrays -0.01 we obtain for a square array of n X n gates (4n X

In Refs. 3 and 4 polarization logic gates were pro- n channels) by Eq. (3),
posed while, independently, in Ref. 5, a similar model SNR - o .

was proposed for the implementation of optical Fred- 0.01 X (4n - 1)
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Thus the SNR with presently available gate arrays will This work was partially supported by the Office ofr be better than 2 up to n = 12, i.e., a total of -500 Naval Research under contract N00014-86-K-0591.
channels that can be switched at a rate approaching 1
MHz. Research on this kind of spatial light modulator
indicates that the above numbers may be appreciably
improved in the future.
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Residue arithmetic processing utilizing optical
Fredkin gate arraysV
Mir M. Mirsalehi, Joseph Shamir, and H. John CaulfieldI

A cascadable residue arithmetic processor based on optical Fredkin gate arrays and page-oriented holograph-
ic memories is introduced. The implementations of residue functions and operations by this processor are
described. Analytic expressions are derived for the number of holograms and waveguide channels required
for the implementation of residue addition and multiplication. The practical cases of 16-bit addition and
multiplication are analyzed as specific examples. It is shown that, using the proposed architecture, these£ operations can be implemented with state-of-the-art technologies in holography and integrated optics.

I. fItroducti N. Background on Residue Aritmetic and Freicin
There is a growing interest in the field of digital Gate$

optical computing.' To obtain digital optical proces- A. Residu Arihmetic
sors that greatly surpass the performance of the
present computers, the inherent advantages of optics The foundation of residue arithmetic dates back to
should be utilized. Two major advantages of optics the first century A.D., when the Chinese mathemati-
are interconnection and parallelism. Global intercon- cian Sun-Tsu published a verse in which he gave an
nections can be achieved by classical optical devices, algorithm for finding a number whose remainders on
such as prisms and lenses,2 or by holograms.3.4 Also, it division by 3, 5, and 7 are known. A general theory of
has been recently shown that an array of optical Fred- remainders (now known as the Chinese remainder
kin gates constitutes a very efficient and versatile in- theorem) was established by the German mathemati-
terconnection network. 5,6 Parallel processing can be cian K. E. Gauss in the nineteenth century. The ap-
achieved easily in optics by manipulating the elements plication of residue arithmetic in computers, however,
of a 2-D array. To take full advantage of the parallel- is relatively recent and was first introduced in 1955 by
ism in optics, digital techniques that are suitable for Svoboda and Valach in Czechoslovakia. 7

parallel processing can be utilized. One of these tech- Unlike the commonly used binary and decimal num-
niques is residue arithmetic, which is based on the ber systems, the residue number system (RNS) is an
residue number system (RNS). The main advantage unweighted system. The base of a residue system
of the RNS is that its digits are independent of each consists of n pairwise relatively prime (having no com-
other; e.g., there iq no carry in addition. This allows mon factor) numbers, ini, M2,...., mn,, called moduli.
simultaneous operation on all digits. Any integer X can then be represented by an n-tuple

The purpose of this paper is to show how an array of (xX 2 , ... ,x,,), where xi = IXIm,,, (read X mod ni) is the
optical Fredkin gates can be used to realize residue positive remainder that is obtained from the division
arithmetic. To provide the required background, resi- of X by mi. This representation is unique for a dy-
due arithmetic and Fredkin gates are briefly described namic range of
in Sec. II. The general realization of residue arithme-
tic with optical Fredkin gates is introduced in Sec. III, M = H in.

while the implementation of residue addition, multi-
plication, and other operations are described in Secs.
IV, V, and VI. Finally, in Sec. VII, the potential An important feature of the RNS is that the fixed-
characteristics of this processor are summarized, point arithmetic operations can be performed on each

digit individually. That is, if X .(X1,X2....,x,) and Y
- (Y,Y2, ... ,y.) are two numbers of the same residue
system, Z - X * Y = (z,z 2 .... z), where z, -
I(xi * yi),1, for i - 1,2 . . n, and * represents addition,

The authors are with the University of Alabama in Huntsville, subtraction, or multiplication. Division can be per-Theautorsarewit th Unvesit ofAlaamain untvile, formed, but it is difficult except for the remainder zero
Huntsville, Alabama 35899. Mir Mirsalehi is in the Electrical & forede
Computer Engineering Department; the other authors are in the case'8

Center for Applied Optics. As an example, consider the set of four moduli 15, 7,
Received 13 December 1986. 8,91. These moduli cover a dynamic range of 2520. In
0003-6935/87/183940-07/02 00/0. this residue system, the decimal numbers X = 42 and Y3 1987 Optical Society of America. -31 are represented as X - (2,0,2,6) and Y = (1,3,7,4).
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The results of performing addition, subtraction, and C CS
multiplication on these numbers are X + Y- (3,3,1,1), A A'
X - Y - (1,4,3,2) and X. Y - (2,0,6,6), which are the so
residue representations of the correct answers, i.e., 73,
11, and 1302, respectively. rag

B. FrdidnFig. 1. Fredkin gate.
B. Fredl s

The basic Fredkin gate has three binary inputs and
three binary outputs (Fig. 1). The control input C A A'
determines the operation of the gate according to the
following rules: B'

C' - C,

A'-AandB"-B, ifC-0, (1)C

A' - B and B' - A, if C - 1. Fig. 2. Waveguide coupler implementation of the Fredkin gate.
TlI is the interaction region where coupling is switched ON or OFF.The Fredkin gate is afunctionally complete sti

Boolean algebra. That is, any binary logic operation,
such as AND, OR, and NOT, can be realized by Fredkin LAYER 2 4
gates. The application of optical Fredkin gates as
interconnecting systems is of special interest. It has
been shown recently that an array of optical Fredkin .
gates can operate as a very efficient interconnection3network with parallel addressing capabilities.6  ...... bOptical Fredkin gates can be implemented by vari- 0

ous techniques.5 Here we are interested in the imple- a4 b4mentation by the waveguide couplers shown in Fig. 2. F
The two inputs, A and B, are switched when the inter- ig. 3. Fredkin gate array of four channels and four switching
action region I is activated by the control signal C. layer.
The most efficient construction involves a photore-
fractive interaction region directly activated by light N N+ 2 N N

However, the electrooptic effect may also be used by 0
employing an amplified signal from a photodetector 0o

that receives the C input
The waveguide coupler of Fig. 2 is the basic building 2 2_ 2

block for constructing a general interconnection net- 3 3 3 3
work. As an example, a four-input, four-output net-
work is shown in Fig. 3. Checking all possible switch- (b)
ing combinations, one can show that with this Fig. 4. Example implementations of functions in residue arithme-
arrangement any input signal ai (i - 1, 2, 3, 4) may be tic by interconnecting systems: (a) addition of 2 to a residue num-
coupled into any output port bi. In other words, all ber modulo 4; (b) raising a residue modulo 4 number by power 3.
twenty-four permutations of the four inputs are possi- The input is entered from the left, and the output is obtained from
ble with four layers of switches and a total of six switch- the right.
es. In general, for n - 2N channels, one needs n
interaction layers and n(n - 1)/2 switches to establish small number, it is practical to have m channels corre-
all n! possible permutations of the inputs. sponding to these values. An input number is then

coded as the presence of light in the channel that
U. b sW atN of Ruidi. Arlhme.c by Optical corresponds to its value. Any process on the input

eFodkin Gat data is possible by coupling the light from the input
The calculations in residue arithmetic have a cyclic channel to the appropriate output channel using an

nature. Therefore, they can be implemented by phys- interconnecting system.
ical properties that are also cyclic in nature. Using the As illustrative examples, two interconnections that
cyclic property of the phase or polarization of light, implement residue functions modulo four are shown in
optical residue-based processors have been devel- Fig. 4. The system in Fig. 4(a) adds two to an input
oped.9- 2 A major problem with these implementa- number in residue arithmetic. Using modulo four, the
tions is that precise control of the phase or polarization possible values of the input number are 0, 1, 2, and 3.
of light is usually difficult and requires bulky devices. With the above operation, these values are mapped to
A better technique is to use positional coding for 2,3,0, and 1, respectively. Figure 4(b) shows a system

data representation. 13- 18 The input and output of a that provides the third power of a residue number
residue processor modulo m can have integer values modulo 4. Other residue functions can be realized by
from zero to m - 1. Since the modulus is usually a similar interconnections.
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I
optical Fredkin gates in conjunction with page-or-

ented holographic memories can be used to implement
the interconnections required for residue arithmetic.
Figure 5 shows such a processor that uses modulo 4. 0 POHM
Starting from the top, the four channels correspond to
integers 0, 1, 2, and 3. Depending on the processes of
interest, a number of holograms are recorded at differ-
ent locations of a holographic material. The input
number is coded as the presence of light in one of the£ input channels on the left, and a laser beam is deflected
to a particular hologram corresponding to the required o
process. The reconstructed beams activate some of 2 OFGA

the switching elements coupling the light from theinput channel to the appropriate output channel.
The above processor can be realized with present Fig. 5. Schematic diagram of the proposed processor- POHM.

technology. Optical waveguide couplers can be fabri- page-oriented holographic memory; OFGA, optical Fredkin gate
cated using integrated optics technology.19 Different array.
holographic materials such as photographic films,
dichromated gelatin, thermoplastic materials, or pho-
torefractive crystals can be used for recording. 20 Fi- N NZ ° N,+N N, N2:1 N. 2
nally, the deflection of the laser beam can be achieved 2

by an acoustooptic cell. 21 With the progress in the 0 0 0 - 0

technology of spatial light modulators, they may re- I I I I
place the combination of the acoustooptic deflector 2_ 2_2__
and hologram. However, their operation will be rela- 2 2 2 2
tively slow. In the following two sections, the imple- 3 3 3 3
mentations of residue addition and multiplication
with this architecture are analyzed in more detail. b

NV. ReuIe Addition
To implement a residue operation on two numbers,

one of the numbers N, is used as the input to the N N2 2
system, while the other number N2 is used for selecting 0
the proper interconnection. To illustrate this point, 0
Fig. 6 shows the four types of interconnection (maps) I
that are needed for implementing residue addition 2 2 2 2
modulo 4. One of these maps [Fig. 6(a)] is a
straightthrough interconnection which can be ob- . .,/ 3
tained by default; there is no need to activate any ()2
switches. Each of the other three interconnections
can be realized by activating some of the switches. Fig. 6. Interconnections corresponding to residue addition .VcanN 2 ) modulo 4. The interconnections tal,(b),.(cl, and (d} correspond

Therefore, the whole residue addition modulo 4 opera- to N2 - 0, 1,2, and 3, respectively. The input N is entered from the
tion can be implemented with four channels and only left, and the output N, + N 2 is obtained from the right.
three holograms (Fig. 7). In general, the implementa-

tion of residue addition modulo m requires a Fredkin
gate array of m channels and m layers, thus m(m - 1)/2

switches, and recording m - 1 holograms. , . 2 , , ,

In practical cases, a digital system should have a 0, ?o 0- 0.
large dynamic range. This can be achieved by choos- s " -... -- '--

ing a set of pairwise relatively prime moduli. The
optimum set of moduli, in the sense of covering the (5)

required dynamic range with minimum number of ho-
lograms, consists of numerous small moduli which are N, N. 2  N, +N2  NJ N, -3 N, N
either prime or powers of prime numbers. The proce- 0 0 0o -dure for selecting such a set of moduli for a required 21 12 'L_-

dynamic range can be found in Ref. 22.
As an example, a 16-bit fixed-point operation re- (d)

quires a dynamic range of 216 - 65,536. The optimum Fig. 7. Required switching states for implementing residue addi-
set of moduli for this case is 13, 5, 7, 8, 11, 131, which tion (N, + N2) modulo 4. The hatched switching elements are ON.
covers a dynamic range of 120,120. Each modulus m, The four interconnections realized in (a). (b), (c). and (d) correspond

is treated individually by devoting m, channels to it. to N2 - 0. 1. 2. and 3. respectively.
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£
SN .o Nx N, N N, X N her of holograms. The selection of the appropriate

0 0 0 0 2hologram for a specific case then depends on both

I I input numbers. As an example, we discuss residue
multiplication modulo 4. The realization of the inter-

2 - 2 2 2 connection for the N 2 - 0 case [Fig. 8(a)] requires the
3 - 3 3 3 recording of three holograms corresponding to NI - 1,

2, and 3. The case of N, - N 2 - 0 does not need a
(b) hologram, since zero-to-zero coupling does not require

any switches to be activated. Similarly, the N 2 - 1
case [Fig. 8(b)] does not require any holograms, since it

corresponds to a straightthrough interconnection.
N, N'.2 N XN Z  N, N2 3 NXN TheN2-2case[Fig.8(c)]requirestherecordingoftwo

hologram, one for N, - 0 and 1, the other one for Ni -
0 0____ h o 2 and 3. Finally, the N2 - 3 case [Fig. 8(d)] requires

I'- I I I one hologram, since it corresponds to an onto mapping.
L22 2  Therefore, the whole operation of residue multiplica-

tion modulo 4 can be implemented by 3 + 2 + 1 - 6
3 3 3 3 holograms.

(In general, the number of required holograms forC¢ ) multiplication mod m - pnt, where p is a prime number
Fig. 8. Interconnections corresponding to residue multiplication and n is a positive integer, can be obtained from

(N, X N 2) modulo 4. The interconnections (a), (b), (c), and (d)

correspond to N2 - 0, 1, 2, and 3, respectively. The input Nt is N, = (n + 1)p' - np' - - 2. (2)
entered from the left, and the output N, x N2 is obtained from the

right. The derivation of the above formula is provided in
Appendix A. For the special case of n = 1, Eq. (2) is

Considering residue addition, the number of required reduced to Nh - 2p - 3.
holograms corresponding to moduli 3,5,7,8,11, and 13 As an illustrative example, the number of required
are 2, 4,6, 7, 10, and 12, respectively. The number of holograms for implementing residue multiplication

switches corresponding to the above moduli are 3, 10, moduli 3,5,7,8 (- 23), 11, and 13 are 3,7,11,18, 19, and
I 21, 28, 55, and 78, respectively. Therefore, the 16-bit 23, respectively. The 16-bit fixed-point multiplica-

fixed-point addition can be implemented in residue tion that uses the above moduli can, therefore, be
arithmetic by a page-oriented holographic memory implemented by eighty-one holograms. This is about
consisting of forty-one patterns and a waveguide gate twice the corresponding number for 16-bit addition.
array coi,,sisting of forty-seven channels and 195 The number of required channels and switches are the
switches. same as those for the addition case, i.e., forty-seven

channels and 195 switches.
V. Reekskil MUpNUM This method may be useful for some applications,

The implementation of residue multiplication by but the problem is that the deflection of the laser beam
Fredkin k ates is not as easy as the residue addition to the appropriate hologram depends on both input
case. TLs is due to the difference that exists between numbers. This is sometimes practically difficult to
the types of interconnection needed for these opera- achieve and requires a partial electronic processing.
tions. Residue addition has the property that each Also, since one of the numbers should be presented in
possible , alue has the same number of occurrences in two forms (as the input to a waveguide and as the input

the output. Also, the mappings corresponding to resi- to the beam deflector) the system is not cascadable.
due add4 ion are one-to-one (onto). These properties The method described in the next subsection over-
are not vdid for residue multiplication.2 For exam- comes these shortcomings.
ple, the four interconnections corresponding to residue
multiplic'-tion modulo four are shown in Fig. 8. It can B. Increasing the Number of Channels
be seen ti tat the occurrences of the output values are Another method for implementing residue multipli-
not the same and that two of the mappings [(a) and (c)] cation is to increase the number of channels. In this
are not e ie-to-one. Using Fredkin gate arrays, any method, the number of channels that are devoted to
permutation of the input signxts can be achieved, each value is determined by the maximum degeneracy
However, no two input signals can be coupled into the of that value in the output. We demonstrate the pro-
same output port. Therefore, Fredkin gate arrays are cedure again by the residue multiplication modulo 4
naturally suitable for onto mappings, and some modi- case. As shown in Fig. 8, the maximum degeneracies
fications are required to implement a general case as of the values 0, 1,2, and 3 in the output are 4, 1, 2, and 1,
described in the following subsections. respectively. Therefore, a total of 4 + 1 + 2 + 1 - 8

channels is needed to implement this operation (Fig.
A. Increasing the Nurber of Holograms 9). The extra channels are used to make many-to-one

One method for implementing residue multiplica- mappings possible. In the input, only one channel is
tion with optical Fredkin gates is to increase the num- needed to code each value. The input values 0, 1, 2,
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and 3 are coded as the presence of light in the first, , o ,, N, M2

fifth, sixth, and eighth channel, leaving the other input
channels idle. In the output, the presence of light in
one of the first four channels is an indication of the
result being equal to zero. If the result is 1, light
should appear in the fifth channel; if it is 2, light should
appear in either the sixth or seventh channel; and if it (b)

is 3, light should appear in the eighth channel.
Figure 9 shows how the required interconnections

for residue multiplication modulo 4 can be obtained.
The four cases shown in this figure correspond to N2 = N, N.2 N, X N2  N, N2.3 , XNZ

0, 1, 2, and 3, respectively. In each case, the switches 0'- ! 0

that should be activated are marked. Notice that the
N 2 = 1 case does not require activating any switches. 2 3 -__
Therefore, the whole process can be implemented by
only three holograms. In general, using this tech- C

nique, multiplication modulo m requires m - 1 holo- F
grams (same as the number required for residue addi- Fig. 9. Required switching states for implementing residue multi-

plication (N X N) modulo 4. The hatched switching elements are
tion). ON. The four interconnections realized in (a), (b), (c). and id)

The fact that more than one channel is devoted to correspond to N2 = 0. 1. 2. and 3, respectively.
some output values does not produce a problem in
cascading these processors. One method for cascading
is to merge all the output channels that correspond to a switches N, can then be found from the corresponding
particular value by using a transition region. Also, expression for an array of N, channels and Ni layers,
notice that the above architecture used for implement- i.e.,

ing non-onto mappings can also be used to handle onto N, - (N - UN121.
mappings. For example, the same waveguide couplers
that are used for realizing residue multiplication can If N, is even and N is odd, depending on the structure
be used to realize residue addition as well. In this case, of the gate array, N. is the nearest upper or lower
some of the channels will not be used, since for imple- integer of the value inside the brackets. It is possible
menting an onto mapping, only one channel is needed to design the array so that N, is the nearest lower
for each value. integer.

The number of channels required in this technique As an illustrative example, the number of required
depends on the modulus. In general (see Appendix channels for implementing residue multiplication
B), the number of required channels N, for multiplica- moduli 3, 5, 7, 8 (- 23), 11, and 13 are 5,9, 13, 20, 21, and
tion mod m - p11, where p is a prime number and n is a 25, respectively. The 16-bit multiplication that use,

positive integer, is given by the above moduli can, therefore, be implemented by
, =ninety-three channels. The number of interaction

Nn + I)p" - ' - . !) layers required for the above moduli are 3, 5, 7, 13, 11,
For the special case, where n = 1, Eq. (3) is reduced to and 13, respectively. The corresponding number of

N, - 2p - 1. switches are 6, 20, 42, 123, 110, and 156, which add up
It is interesting to note that the number of channels to 457. The number of required holograms is the same

in this method is very close to the number of holograms as the 16-bit addition case, i.e., forty-one.
in method A. In fact, the two numbers differ by a
constant of 2. This difference is due to the two inter- V1. 0Wr Applicatiom
connections (corresponding to the Nt - N 2 - 0 and N 2  A major advantage of the second architecture is that
= 1 cases) that are realized by default in the first it is cascadable. The output of the processor appears
method. If two holograms are considered for these as the presence of light in a particular position, where
cases, the two numbers become identical. an input channel of the next processor may exist. One

Another interesting point is that, although the num- possible application of the cascading property is the
ber of input and output channels in Fig. 9 is eight, only evaluation of polynomials. Horner's rule for polyno-
five interaction layers and seventeen switches are used, mial evaluation is well known. For example,
because not all permutations of the input channels are
needed. For example, if N, - 3, the input light does P(x) = acx' + a.x3 + + ax + ao
not have to be coupled to the first three channels of the - I[(ax + a,)x + ajx + a1Ix + a,). 6)
output. In general, the number of required interac-
tion layers Ni for residue multiplication is This can be easily pipelined into a set of operations on

N,- an optical input signal using the values of x and a, as
N N +the inputs to the deflectors (Fig. 10). Since positional

where N,. is the number of channels and m is the coding has been used for data representation, minor
modulus. Having the number of layers, the number of light losses do not prevent such cascading. Polynomi-
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S al evaluation is a very powerful operation becausea o
many functions can be represented accurately by a

I polynomial. -

The proposed architecture is not limited to perform- Fig. 10. Cascaded system for evaluating P(x)= a 4X4 + ax3 + a2z2 
+

ing a series of arithmetic operations. In fact, any atx + ao using Horer's rule.
mapping in the residue system can be performed by
this processor. To allow for all possible mappings, m
channels should be devoted to each possible value, quired mappings for an example case can be seen in
where m is the modulus used. Thus an r.rray of m 2  Fig. 8.
channels is required for the most general operation. If the modulus is a prime number (i.e., m - p), all the

3 The input number N, can be coded as the presence of mappings, with the exception of the one that corre-
light in one of the channels that correspond to its value. sponds to the N2 - 0 case, are onto. This special case
Depending on the mapping of interest, a particular requires p - 1 holograms, one for each of the nonzero
hologram is selected by the second input number N 2. values of N. No hologram is needed for N, - N2 - 0,

5 The reconstructed light activates some of the switches since zero-to-zero coupling does not require any
and couples the input light to one of the m output switches to be activated. The remaining values of N2

channels that correspond to the result. (i.e., 1, 2,..., and p - 1) produce onto mappings. The
N 2 - 1 case does not require any holograms, since it

VU. Cmcimim corresponds to a straightthrough interconnection.
A residue arithmetic processor based on optical Each of the other cases requires one hologram. There-

Fredkin gate arrays has been introduced. The proces- fore, the total number of holograms is Nh - (p - 1) +
sor consists of optical waveguide couplers and a page- (p - 2) = 2p - 3.
oriented holographic memory. The components If the modulus is not prime, more holograms are
needed for the fabrication of this device can be needed. The case of interest is when the modulus is a
achieved with the present technologies in integrated power of a prime number, i.e., m = pn. The number of
optics and holography. The device is insensitive to required holograms for this general case can be ob-
variation in phase or polarization of light, since posi- tained by analyzing the mappings involved as follows:
tional coding is used for data representation and pro- (1) The N 2 = 0 case maps all the inputs to the zero
cessing. And finally, the processor is cascadable. output. Hence it requires m - 1 - pn - 1 holograms.

Realization of residue functions and operations with (2) The N 2 - kpcases, where 0 < k <pn- and k and
this processor has been described. The implementa- p are relatively prime, map the inputs to the output
tions of residue addition and multiplication have been ports that correspond to integer multiples of p. There

i analyzed in detail. The implementation of residue are (p - 1)pn- 2 such cases, and each requires p holo-
addition is straightforward, since all the mappings are grams. Therefore, (p - 1)pn - ' holograms are needed
onto. Residue multiplication is more complex, since for these cases.
some of the required mappings are not onto. (3) In general, the N2 = kpq cases, where 0 < q < n,

I Two methods have been described to realize non- 0 < k < pn-q, and k and p are relatively prime, map the
onto mappings with optical Fredkin gate arrays. One inputs to the output ports that correspond to integer
method is to increase the number of holograms without multiples of pq. There are (p - 1)pn-q-1 such cases,
changing the number of channels. The second meth- and each requires pq holograms. Therefore, to realize
od, which appears to be more powerful, is to increase the cases corresponding to each value of q, the storage
the number of channels without changing the number of (p - 1)p"- holograms is needed. Since q has n - 1
of holograms. The latter technique has the advantage possible values, the total number of holograms corre-
that the addressing of the holographic memory is de- sponding to all N2 - kpq cases is (n - 1)(p - 1)pn- 1.

termined by one of the input numbers and, therefore, This includes the number of holograms obtained in (2).
can be achieved by a 1-D deflector, such as an acous- (4) In all the cases considered so far, N 2 is an integer
tooptic cell, multiple of p. The total number of these cases is pn-.

The proposed processor is not restricted to the basic [n the remaining pn - p- I cases, N 2 and p are relative-
arithmetic operations. It has been shown that more ly prime and produce onto mappings. The intercon-
complex operations, such as polynomial evaluation nection for one of these cases (NW2 = 1) can be realized
and general mapping, can be implemented with this without any hologram, while the others need one holo-
architecture. gram each. Therefore, pn - pn- I 1 holograms are

needed to realize the interconnections corresponding
Appendx A: Number of Holorans in Metwd A to these cases.

In this Appendix, analytic expressions are derived The total number of holograms for implementing
for the number of holograms required for implement- residue multiplication modulo m = p" using method A
ing residue multiplication using the method described can then be obtained by adding the numbers derived in
in Sec. V.A. The two numbers involved in multiplica- (1), (3), and (4). The result isi tionareNIandN 2,whereNI is coded asthe presence of N, - (P'- i) + (n - mp - 1)p- ' + (p" - P- - 1)
light in a channel waveguide, while both NI and N 2 are
used as the input to the deflecting system. The re- 1n )p' - - 2. (Al)
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IPattern recognition using reduced Information
content filters

i Joseph Shamir, H. John CaulfieWd, and Joseph Rosen

Pattern recognition by optical spatial filtering procedures is discussed using general considerations with the
objective of reducing the information content in the spatial filter. The achievement of this objective is very
useful toward the wide application of spatial light modulators and also for facilitating distortion invariant

recognition. The proposed novel approach is demonstrated by an ezample employing bipolar spatial filters
for rotation invariant pattern recognition.

I. h a correlation peaks, but this will be a suitable price for
Usually the emphasis in research toward a useful higher flexibility and easier applicability.

optical pattern recognition architecture is the attain- We start from general considerations that are inde-
ment of higher and narrower correlation peaks em- pendent of the particular architecture to be adopted.
ploying holographic spatial filters L.2 with high infor- Most of the steps described may be applied to a diverse
mation content. For real-time applications one would set of configurations. For example, they are valid for
like to use devices like spatial light modulators that coherent or incoherent pattern recognition performed
cannot handle these large amounts of information, by employing spatial frequency filtering or template
The high information content is also a hindrance when matching. To obtain shift invariance we shall restrict
distortion invariance such as rotation or scale change is the discussion to spatial filtering procedures over the
considered. For example, both the matched filter 2  Fourier transform plane.
and its more recent variant, the phase-only matched
filter,3.4 yield high correlation peaks. Unfortunately, Q. G fWa CasIderation
these filters are the most intolerant of any distortion We define our goal to be the recognition of each
because a large part of their information content is that pattern in a set of N patterns, f,(x,y), (i - 1,2,... ,N).
of the orientation and scale of the object. The limitation to N predetermined patterns is not so

The main objective of this work is development of a severe as it seems at first sight, since one or more of
pattern recognition approach taking into consider- these patterns may be noise or background. We form
ation the resolution limitations of presently available 2-D Fourier transforms (FTs), F,(u,u), and wish to
spatial light modulators. To achieve this goal we seek manufacture a set of filters M,(u,u), (j = 1,2,... ,N) in
a procedure for reducing to a minimum the amount of such a manner that we obtain an optimal response
information to be written on these modulators when represented schematically by the relation
they are employed in the input and filter planes of a R,1 - o1F,(u.u); %,(,u)1 - 6,,. M
pattern recognition system. It is evident that the
penalty to be paid is a reduction in the quality of the where 0 is some operator. The degree to which we can

approach this ideal response depends on the operator,
the set of filters, and the patterns involved. For exam-
ple, we may consider the integral power reaching the
output plane of the optical system, O(xy), indicated in
the schematic representation of Fig. 1. By Parseval's
theorem this power is identical with the power trans-
mitted by the filter positioned at the FT plane [M(u,v)

Joseph Rosen is with Technion-Israel Institute of Technology, in the figure]. For this configuration criterion (1) has
Department of Electrical Engineering, Haifa 32000, Israel; the other the form
authors are with University of Alabama in Huntsville, Center for
Applied Optics, Huntsville. Alabama 35899. R,, - J1F,(uu)M,(uV} 2dudv a 6,,. (2)
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0003-035/87/12231 1-04$2.00/0. This, however, is a paradoxical requirement since we
i 1987 Optica Society of America. deal with a positive definite integrand, and one may
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I I.....y) This is a very far reaching consequence as it means that
i to discriminate among N patterns it is adequate to use

filters with N transmittance values. We have to point
out, however, that the above conclusion is only theoret-l I I ical and holds if filters and detection can be imple-

- -mented with infinite dynamic range and infinite accu-
racy. Furthermore, the above relations were obtained

Fig. 1. Spatial filtering system: L. Fourier transforming lenses of by constraints imposed on a single point in the output
focal length f, f(xy), input pattern; O(x,y), output pattern; and plane. For a satisfactory discrimination, taking into

M(uMui, filter function. account practical considerations, this will usually not
be adequate, and the number of equations (and sam-
ples) will have to be multiplied by the number of

have a nonvanishing filter function only for i = j. required discriminating points. This procedure es-
Naturally, such a criterion cannot lead to a selective set sentially generates a synthetic discriminant function
of filters, and one should seek a solution that involves (SDF).5

the analysis of a power redistribution over the output We considered up to this point N X L rectangular
plane. sample regions just as an example. To attain efficient

As our starting point we refer to Fig. 1 and define the recognition the area and shape of these samples must
response according to Eq. (1) as the power incident at be optimized according to the recognition task. For
the origin of the output plane. (Since we are dealing another example we consider rotation invariant pat-
with Fourier plane filtering the position of this origin tern recognition with rotationally invariant filters.
corresponds to the position of the object in the input For this case the filter division is along concentric
plane.) Denoting by Oij(xy) the output distribution rings. Denoting the radius of the kth ring by rk we may
produced by pattern Fi(u,v) illuminating filter Mj(u,v) have to look for an optimal function h(k) that gives the
this recognition criterion states various radia (8)R= O(,)2 =6,(3) r = h(k). 8

An interesting and simple class of these functions
where, in the configuration of Fig. 1, can be written in the form

0. h(k) = rlkq, (9)
x,y) f7[F.(u,v)Ml(u~vI, (4 where r, and q are constants. Thespecialcaseofq = 1/2

and Eq. (1) is now equivalent to is the Fresnel zone division where all the rings have the
same area, while the case q = -1/2 may be termed the

IF, (u,)M,(u,v)dud = 6k, (5) inverse Fresnel zone plate (i.e., the kth radius of the
Fresnel zone plate multiplied by the kth radius of the

This relation represents a set of linear equations inverse Fresnel zone plate is a constant for all k).
that can be solved, at least in principle, to generate the These two kinds of division complement each other
filters M,(u,v). with respect to the nature of patterns to be discrimi-

nated. The first kind of division has rings that become
IIl. Fifter Gemation very narrow for high spatial frequency values, thus

To solve Eq. (5) for each filter and generate Mj we making it a good rotation invariant filter for patterns
have to sample the Fourier plane. Assuming a rectan- having their important features at high frequencies.
gular coordinate system we divide the Fourier plane Conversely, the second choice will be suitable for filter-
into K x L regions of area skl, each (not necessarily ing information at low spatial frequencies. An inter-
equal) with k = 1,2,... ,K and I = 1,2,... ,L. To each mediate case may be treated with filters having q = 1
of these regions we designate a constant value Mjkl as where the width of the rings is constant. This analysis
its (generally complex) amplitude transmittance. is reminiscent of the procedures utilized in Ref. 6

Integrating the incident complex amplitude over where a specific circular harmonic was chosen for each
each region we form the matrix elements recognition task depending on the objects to be dealt

with. Sometimes the useful information is concen-
F,,= f F,(u,'v)dudv. (6) trated only in certain regions of the filter plane. For

" example, in many cases the low frequency region doesand we may generate the filter samples by solving the not contain selective information, and better filtering
set of Ne linear equations: is obtained by eliminating the energy in this region

K L altogether.
Fz -,M (7) A similar procedure would be implemented for com-

plete scale invariant pattern recognition where the
where i, j = 1,2,... N. filter should depend on angular orientation only and

Equation (7) gives N equations for each of the N not on the distance from the origin. For this case one
filters Mj(u,v) consisting of K X L unknown samples. would need radial division lines to split the filter plane
Thus one may obtain a unique solution if K x L = N. into L sectors.
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Fig. 2. Two random patterns to be discriminated. Fig. 3. Rough representation of a rotationallv invariant bipolar
filter made for recognizing the top pattern of Fig. 2.

IV. Bipolar Filters and Experiment
In principle the filters described in this work can be

generated similarly to other composite filters7 or circu-
lar harmonic filters6 as computer generated holo-
grams. However, the present procedure has a more
general attitude, and other implementations are also
possible. Although the information content of these ~-
filters is relatively low, a holographic filter needs still a
quite large bandwidth. To reduce this requirement
we show now that filters with real, positive, and nega-
tive valued transmission characteristics can perform
reasonably well even for rotation invariant pattern
recognition. It has been shown8 that the implementa- " . ,
tion of such bipolar filters is possible, and with the 4 .

advent of spatial light phase modulators the procedure
becomes rather simple. One major advantage of work- . ____"_. __

ing with nonholographic spatial filters is the in-line Fig. 4. Output intensity distribution with input of Fig. 2 and opera-

architecture of the whole optical system. tion with the filter of Fig. 3.
In a bipolar filter the amplitude transmittance of

each filter element is real and satisfies the relation

F i, ,r.o2rrdrd. 
II

This is a very serious constraint on the equations de-
termining these values [Eq. (7)], and in many cases where integration is performed over the area of the kth
such solutions are not available. The only way to get ring sk. With these definitions Eq. (7) will be replaced
around this problem is to relax the conditions on the by
right-hand side of the equations and optimize the solu-
tions. I i 12

To demonstrate the procedure we implement a con- '

pletely rotation invariant filter. For a general treat- Since this relation concerns the absolute values of each
ment of rotation or scale invariant pattern recognition, equation, an arbitrary phase may be assigned to render
it is useful to represent the input pattern in polar the values of M,, real.
coordinates. We denote by F(r,O) the complex ampli- To test the viability of the present approach some
tude distribution produced by the input pattern at the computer experiments were performed, and rotation
filter plane, and we employ a circularly symmetric invariant recognition was demonstrated. One experi-
filter. We divide the filter plane into N concentric ment involved random patterns as shown in Fig. 2.
rings (where N is now the total number of divisions as The filter plane was divided into sixty-four concentric
discussed in the previous section) and denote by Mgk rings, and filters were generated according to Eq. (12).
the transmittance (real, positive, or negative) of the Figure 3 is an approximate representation of the rota-
kth ring in the jth filter. Equation (6) can be now tionally invariant filter made for one of the patterns.
rewritten in the form while Fig. 4 is the intensity distribution over the fil-
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allow V. Conckslons

W Ii~ I I - VA simplified approach to optical pattern recognition

was proposed to make its practical application more
feasible. As an example of possible implementation of
the present approach a recognition criterion was cho-
sen so that the filters contain information about the

-BK complete complex amplitude distribution of the pat-
terns. Using computer experiments it was shown that
adequate information may be contained in bipolar fil-

: I ters to recognize patterns even in a completely shift
and rotation invariant manner with no need for holo-

.. ... " " - graphic filters. In a subsequent publication it will be
shown that the approach presented here can be em-' L': i ' ]ployed for different kinds of filter, i.e., phase filters,

-O~lmand patterns of various nature.
0 3 64 96 127 It should be emphasized that criterion (1) can never

i be exactly satisfied. Further studies are carried out to

Fig. 5. Cross section along a diameter of the filter with removal of search for possibly better criteria that may also below frequency components. easier to implement optically.

iThis work was partially supported by a contract with
NASA Johnson Space Center under contract NAS9-327598.
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3 Invfted Paper

Rotation-Invariant Pattern Recognition and Some of Its Limitations

H. ,J. Caulfield and Joseph Shamir

Center for Applied Optics, The University of Alabama in Huntsville
Huntsville, Alabama 35899

Abstract

Rotation-invariant pattern recognition is shown to have intrinsic limitations determined by the set of

patterns to be recognized and by the specific optical setup. Within these limitations, a general procedure
is proposed for the generation of bipolar filters that do not require the sensitive alignment procedures
involved in holographic filters and are suitable for superposition synthesis to achieve rotation invariance.

Introduction

The oldest and most straight forward approach to pattern recognition Is image plane analysis for
template matching) where one compares the image of the object with some stored pattern. If the object is.
for example, a typed page, one should scan the page to locate each letter and then compare it with giventemplete letters. To consider the additional possibility that some of the letters may be rotated we shall

have to perform a rotation for each template at each letter position. In an automatic system that has to
perform all these operations, we a-e confronted by an incredibly time consuming task even for the most
advanced computers. Therefore it would be very useful to replace the templates by some rotation-invariant
filters whenever possible.

Besides the problem of rotation, the main drawback of image-plane analysis Is its position dependence.
This problem Is resolved by transferring :he image plane operation to the Fourier-plane where the whole input
information is addressed simultaneously. The conventional optical system perform this procedure is shown In
Fig. 1. A coherent plane wave illuminating the input function f(x.y) operates its Fourier transform (FT) over
plane M giving rise to a complex amplitude distribution. F(u.v). One may record the intensity distribution
on a photographic plate to produce a filter with amplitude transmittance I F

2 
I Reinserting this filter into

place M and replacing the function f by some other function. g(xy) produces a complex amplitude distributionimmediately to the right of M given by G I F 12, where g is the FT of g. An additional FT performed by the

second lens yields, on the output plane, 0, the triple convolution:

g(x.Y) * f (-x,-Y) * f(x.Y) (11)

f(x,y) M(u'v) O(x,y)

f a(La fy)

I I
SI I

I I

I ~LT

Fig. 1. In-line spatial filtering system: L-Fourier transforming lenses of focal
length f; f(x,y) - input pattern, O(xy) - output pattern and M(u,v) -

filter function.

where denotes convolution and fs is the complex conjugate of f. Expression (l) Is the required cross-
correlation of f and g but this is convolved with the function f that makes it a rather poor measure of
correlation even before considering rotations. It should be noted, however, that this kind of filter is Just
one possibility. For example, a better response could be obtaled by using the same filter as an intensity
filter instead of amplitude filter with incoherent illumination

To obtain an appreciable improvement over the above considered possibilities, most of the presentlypracticed optical methods for pattern recognition 2 are based on the holographic matched filter, first pro-posed by VanderLugt
2
. This Fourler-plane filter has a high r solution but Is very sensitive to misalignment.

object scaling and object rotation. From the practical point of view one seldom needs this high sensitivity3 and the stringent alignment requirements limit the applicability of method.
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Many attempts were made to render the VanderLugt filter orientation insensitive: Various averaging

methods 4-12 to produce filters that recognize classes of objects rather than specific patterns were quite

successful and, to some extent, could also be generalized to treat a range of angular orientations. Spatial

multiplexing techniques
13- 15 

are useful in principle but not very practical due to alignment problems and, in

most cases, the involvement of mechanically moving components. Photodetector array detection on the Fourier

plane
16 

and computer processing is also possible but it is applicable only for single-pattern-at-a-tlse ana-

lysis. Recently some more sophisticated rotation-invariant methods were proposed where the spatial filters

are based on circular harmonic decomposition generated by digital computers and recorded holographicallyl
7-
i

8

In principle this approach proved quite efficient but, unfortunately, it involves elaborate hardware and the

use of inconvenient components such as liquid gates that hinder its practical application. The generalized

analysi- of Ref. 19 may be helpful to estimate the response of filters with various degress of rotation

invariance to a specific input but this should be augmented with some derivation of filter selectivity to

different inputs.

In this work we address first the general question of the limitations imposed on rotation invariant pat-

tern recognition by the intrinsic nature of optical methods. It will be indicated that the answer depends on

the specific patterns to be recognized and on the actual procedures applied. With these limitations kept in
mind we propose a new approach to the synthesis of filters. This approach should be straightforward to
implement and eay to use in practice.

III. Some Limitations On Rotation-Invariant Pattern Recognition

Addressing the general question of rotation-invariant pattern recognition, we use polar coordinates to
represent the input pattern, f(r,G). At this state, f represents the complex amplitude distribution produced
by the Input pattern at the filter plane where we insert a filter with amplitude trasmittance m(r.0) This

plane may be either the image plane or the Fourier plane. whichever is more convenient for a certain applica-
tion. As pointed out in Ref. 19 there are a number of ways to define the performance of a filter. One of

these possibilities is the integral detection of all the light arriving at the output plane. Using the prin-

ciple of energy conservation this integral quantity is given by the total power transmitted by the filter:
27 re

R(O) H I a(rO)f(ro9) 1
2

2
rd r d  

2)I ~ 0°
where ra-represents the size of the filter assumed circular. To investigate the response for rotated objects
we may keep the object constant and rotate the filter assuming that all the rest of the system is circularly

symmetric. The response with the filter rotated Into the So orientation may be described by the relation,

27F re

R(eo) ff I '(r - 90) 12 1 f(r.9) 12 rdrdO (2a)

0 0

If we want to make this response rotation-invariant we have to require.

ae0

which leads to the obvious result that In Ishould be independent of the angular coordinate. 9 apart from a

phase variation that may change the output distribution but not Its integral power. Thus, to generate a
rotation-invariant filter one has to apply some amplitude averaging procedures over the angular coordinate.

The most general result from these considerations is that rotation invariant pattern distinction is
possible only among patterns the angular average of which differ from each other at the filter plane. Later
it will be indicated that the response of Eq. 2 is not very discriminant detection. Nevertheless, the

conclusion regarding the angular independence of I I for rotation invariance is quite general but In most

cases restrictions may arise also for the phase variation.

It Is very useful to note here that the same class of patterns that is suitable for rotation-invariant
recognition in the Image plane may be impractical for rotation invariant recognition in the Fourier plane.

Difficulties that may occur can be Illustrated by consideraing the simple block characters as shown in Fig.

2. Assuming that the lines composing the characters are transparent while all the rest is opaque, we rotate
each character around its center of mass and record the transmitted intensity in the image plane. Many of
the patterns .(r) generated this way will have different features characteristics of the original letter.
Thus, in principle, these masks may serve as some crude rotation invariant recognition "templates" for the3 set of characters. This say not be the case if we convert to Fourier plane analysis.
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I A B C
I

D E 0
I
3 Figure 2. A sample of characters for recognition.

The most general result from these considerations Is hat rotation invariant pattern distinction Is
possible only among patterns the angular average of which differ from each other at the filter plane. Later
It will be indicated that the response of Eq. 2 is not very discrimJnant detection. Nevertheless, the conclu-
sion regarding the angular independence of I I for rotation Invarlance is quite general but in most cases
restrictions may arise also for the phase variation.

It Is very useful to note here that the same class of patterns that is suitable fcr rotation-invariant
recognition in the image plane may be impractical for rotation invariant recognition in the Fourier plane.
Difficulties that may occur can be illustrated by consideraing the simple block characters as shown in Fig.
2. Assuming that the lines composing the characters are transparent while all the rest is opaque, we rotate
each character around Its center of mass and record the transmitted intensity in the image plane. Many of
the patterns a(r) generated this way will have different features characteristics of the original letter.
Thus, in principle. these masks may serve as some crude rotation invariant recognition "templates" for the
set of characters. This may not be the case if we convert to Fourier plane analysis.

Figure 3 shows the optically generated FT of the characters in Fig. 2. The highest and most intense
spatial frequency components are generated by the lines constructing the characters. The absolute magnitude
of these components is almost identical for all the characters, the distinguishing feature being only in the
orientation of the FT produced by the various line segments. At first sight It would appear that a rota-
tionally Invariant mask placed in this plane will have difficulties in distinguishing among these unless It
can resolve minute differences due to various lengths of the line segments. It can be seen. however, from
the rotational averages whown In Fig. 4 that appreciable differences still exist but they will decrease as

the line segments get longer when compared to their width. Stated In a more general way, the class of pat-
terns generated by narrow lines (such as line drawings) where the line-width Is the minimum feature size with
all other features having much larger dimensions, is not suitable for rotation-invariant pattern recognition
in Fourier plane procedures.

!

I _

tgure 3. Optical :orurler .ransform of characters from Fig. 2.
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Figure 4. Rotation averages of transforms in Figure 3.

I III. Bipolar Filters For Pattern Recognition

The two extreme approaches for the generation of spatial filters for pattern recognition, I.e. the power
spectrum filter and the holographic matched filter, were discussed in the introduction. Observing the pre-
sent state of art it appears that the performance of the first kind is too poor while the applications of
holographic filters are tedious and frequently require quite sophisticated hardware and software. In this
section we introduce a modified approach to filter synthesis that should be simple to implement and to use.
To achieve this goal we consider the following requirements: a) The spatial filter should be less sensitive
than a holographic filter but should have a better performance than the simple power spectrum filter: b) The
pattern recognition system should give a high response for a specific input together with a negligible output
for any other pattern included in a given set; c) Since we are Interested in rotation-invariant pattern

recognition the proposed method should be applicable for this purpose too. One way to meet requirement (a)
is by the synthesis of a medium resolution filter that discards most of the phase information retaining some
of it in a bipolar form. The filter will also conform with requirement (b) if Its generation will take into
consideration all the patterns to be analyzed. In the following we propose a number of variations to the
implementation of such filters and convert them into rotation-invariant filters in the next section.

Bipolar pattern recognition is usualy considered in connection with incoherent illumination
1 20

However in the present procedure we start from general considerations that are applicable to incoherent as
well as coherent illumination, either for processing performed in the image plane or the Fourier plane. To
keep this work within reasonable limits we shall mainly address Fourier plane processing with coherent

m illumination.

In Refs. 4-8 various mathematical procedures were investigated for the synthesis of composite matched spa-
tial filters. Adopting a similar approach we rely on the fact that the procedure has been proven to be
mathematically sound and simplify the derivation by avoiding steps such as decomposition into sets of
orthor-normal functions. Consider a set of patterns, fj(x.y), (I = 1.2.... N) to be discriminated against
each other. We form their 2-dimensional FT, FI (uv) and wish to manufacture a set of filters Mj (u.v). (J
= 1.2 .... N) In such a way that they will transmit light only if illuminated by a specific pattern.
Mathematically, this requiremwent may be expressed by the relation.

ff Fl (u,v) 12 1j(u.v)2dudv =sij

where we assume Mj to be a complex amplitude transmission function. Unfortunately this is a paradoxical

requirement since we deal with positive definite integrands. Therefore, dny IFi It 0 requires 114j I - 0
for all I tJ resulting with, at the most, one filter that transmits light. Naturally, such a criterion
cannot lead to a selective set of filters indicating that the response function of Eq. (2) is not a good
choice for our purposes. To improve performance we take one step towards a holographic matched filter (the
main function Gf which is a certain redistribution of the power over the output space) and try a bipolar set
of filters with the requirement,

3 ff Fj(u.v) Nj(uv) dudv = rJ (4)
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One way to synthesize a set of real filters that satisfy this relation Is by the linear superposition (a
composite filter).

Nj - akj IFk(uv) I (5)

where a are real (positive or negative) constants and summation over identical indices is postulated.
Althougijthe functions I F, (u.v)! do not constitute an orthonormal set one may still substitute Eq. (5)
into Eq. (4) and solve the following set of lequations,

a kid ffI Fi (u,v) I Fku v)I dudv- (6)

to evaluate akj.

Defering to a later stage the discussion of some difficulties involved in this procedure, we proceed toinvestigate the performance of the system asuming that we possess a filter set described by the charac-
teristics indicated in the above relations. Inserting one of the filters, N . Into the Fourier plane, M of
Fig. 1, we illuminate it with pattern f n placed in the input plane. For c9nvenience. we write the FT of5 fn in the form.

Fn(uv) = fFn(Uv) lexpi* n(UV)
(7)

wher 'n (uv) is a real phase function. The complex amplitude distribution Eq. (7) is transmitted by the
filter and transformed by the second lens to produce the output distribution.

O(x.y) -7(FnMj)= akj(I Fn II Fk I exp iTn) (8)

wherev represents FT. In most cases of interest here, where we shall deal with real input patterns, the
main contribution of the phase function will be a translation of the output pattern to a location
corresponding to its position on the input place. Thus it is useful to consider alternative form:

O(x,y) = akjIl I Fn II Fk I ) *- exp i tn (9)

Since convolution is a linear process, one may perform the summation on k first and the convolqtion after-
wards. The summed function reduces at the origin to Eq. (6), Thus one would expect a strong correlation
for n - k with some weak and blurred responses for all other input patterns produced by some contributionaway from the origin. The convolution with the phase function will introduce a partial reconstruction of
the object and position it according to its location in the input plane.

IV. Rotation-Invariant Spatial Filters

In the following, we restrict ourselves to sets of patterns that are, in principle, suitable for rotation
Invariant recognition and use a procedure similar to the previous one.

We start by representing the functions, Fi In a polar coordinate system,I
F1 (x.y) - F1 (r.0) (10)

and define a set of positive, real, normalized and rotation-invariant functions,

F [ F1 (r.e) Id(

IF I t(r,) 12rdrde

According to our discussion on the limitations with rotation invariant pattern recognition we wouldexpect that discrimination will be possible if these functions differ "appreciably" among themselves. The
amount of difference implied by the word "appreciably" depends on the actual experimental systems. The dif-
ferences may be very minute for computer simmulation with arbitrary accuracy but should be much larger for a
real system. We shall return to this point at the end of this section.
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I Following our previous procedure, we search for a set of filters that satisfy the orthogonality

relation,

ffi(r)M4j(r)2ffrdr -= 

(12)

3 Here too, we shall generate these filters as linear combination of the input patterns:

3 MN(r) - akjfi (r) (13)

Substitution into Eq. (12) leads again to N linear algebraic equations

3 akjf E(r)9k(r)2xrdr- ij (14)

To Implement this filter set, one should determine the set Fi. solve the linear equations for akjand
construct the filters accordingly.

Since the set Fi is positive definite, the solution of Eq. (14) will lead to positive and negative
values for ak4. As mentioned earlier, we gave up the complete phase dependence of the holographic filter
but we still -equire bipolar values.

There are a number of possible approaches for the practical construction of the above described filters

and here we proceed to describe one that may be called a quantized filter. Recalling that a ro',tion-
invariant filter should be circularly symmetric, we divide the Fourier plane into N concentric rings. (The
spacing of these rings and the number N will be discussed In the next section). We now represent each of
the N normalized'functions, i(r) (Eq. 11) by a vector P with components p proportional to the square
root of the total power incident on the J-th ring. The A circularly symmetril filters will be also repre-
sented by vectors in N-space, , with components mk that are the amplitude transmittance of the J-th ring
in the k-th filter. This cIrcuar filters will attan its proper function if we require again the orthogo-3 nality relation,

"i~ ' Cik (151P1JmkJ i

This equation constitutes N
2 linear equations for the determination of the N2 elements of the matrix

m ,Since we are dealing here with a matrix it will be convenient to put the whole procedure into a matrix

foia: We construct the two matrices.

1 pll p12 ... piN

p21 p22 ... p2N

P (16)

and Pnl ............PNN

all'121 .. m

512 m22 ... NJ

(17)I
m 1N .............. m NN

and write Eq. (15) in the convenient form,

3 P M - (8
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where I is the unit matrix. Thus we see that the caiculation of on" f!!t*(r reduces to a s-mp"*, imnerson of
a matrix derived from measurement during the .earn2ng stage

S- P-1 - la

Equations (6) and (14) may be also put in this matrix form by replac:ng m 1j and deftning.

Pik =ff/ Fi (u v) I Fk(uv) dudv ('Q)

for Eq. (6) and similarly for Eq. (14), using the normalized functions 7t is interesting to note that Eq
(18) represents a symmetric matrix which is not necessarily the case for the original matrix defined in
Eq. (15).

The limitations in the implementation of rotation-invariant filters discussed in section are ,mp.
citly included in eq. (18a) and we may return to the phrase, "appreciably different" mentioned dt he
beginning of this section. It is immediately evident that if we have two identical patterns the matrix can-
not be inverted. However, if there are two patterns that differ only slightly. d solution may be obtdl:t<:'
but with m.n. The result is that equations (in EQ. 15) having zero on their right hand side will no!

their right 
1
an

5
side will not be affected but. unfortunately, many of the values unity wil haVe to be

divided by the values unuity will have to be divided I we shall have to deal with an auroc',,rrP:atloo i'ppre-
sented by a small fraction I ! mk that may be undetectable. For any practical system, this number
will determine the limits impolsed on recognition possibilities.

V. Filter-Place Division

In the previous section the filter plane ws divided into N concentric rings without specfyzn2 their
widths. The reason is that the optimal division actually depends on the crass of patter::s u be !ecognized
In principle one may use an arbir-ary furc- 'on to i"-,, !he "alf;% 0 ,'6.e n-*h c~rc'e in the filter
plane,

r = h(n)

An interesting and simple class of these functions can be written in the form.

h(n) = rinq 2l

The special case of q = 1/2 Is the Fresnel Zone division where all the rings have the same area while
the case q = -1/2 may be termed the "Inverse Fresnel Zone plate" (i e the n-th radius of the Fresnel zone
plate multiplied by the n-th radius of the Inverse Fresnel zone plate is a constant for all n). These two
kinds of division complement each other with respect to the nature of patterns to be discriminated. The

first kind of division has rings that become very narrow for high spatial frequency values thus making it a
good rotation-invariant filter for patterns having their important features at high frequencies.
Conversely. the second choice will be suitable for filtering information at low spatial frequenc.es An
intermediate case may be treated with filters having q I I where the width of the rings is cotnstan'. This
analysis is reminiscent of the procedures utilized in ref '6 whe:re a specific circula' harmonic was chosen
for each recognition task depending on the objects to be dealt with

The number of the rings in each filter may also be chosen ii a flexible way jtli 7zing opti!mzat:on
algorithms. However. to avoid unnecessary complications at this stage we made the number of rings equal to
the number of patterns that makes the solution of the equations (15) unique Other implications of this3 subject will be addressed in a subsequent work.

Vt. Dilscussion

A simplified approach to optical pattern recognition was proposed to make its pract c. ipplication more

feasible. Emphasis was placed on rotation-invarianzt pattern recognition and its intrinsic. "mtJ.,tlons
Some of the aspects treated have quite general implications. For example. t was shown that integral
transmission detection is a poor measure for pattern distinction. Therefore the present procedure. like

holographic matched filtering, relies on the intensity distribution over the output plane. Further research
is required for the determination of the actual influence of various parameters sJ:i i,, itifuimatioi conteit
and possible phase variation in the filter

The extension of the present method for cldSS discrimination ;s, in principle, a straight forward pro-
cedure. For example, to implement a mask that determines whether a Le~tlin pattern belongs to a subset (A)
one might superpose all the mask vectors belonging to that subset

S Ma . Mal - .a2 - 'Man (22)

Although mathematically this relation is quite simple, one should keep in mind the need for filter not'-
malization required by the physical limitations
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In a subsequent publication the subject of scale-invariant pattern recognition will be addressed using

a similar approach.

It is a pleasure to thank G. Daniels for performing the photographic work involved in this
Investigation.
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3I Circular harmonic phase filters for efficient rotation-

invariant pattern recognitionI
i Joseph Rosen and Joseph Shamir

A generalized approach for pattern recognition using spatial filters with reduced tolerance requirements was
described in some recent publications. This approach leads to various possible implementations such as the
composite matched filter, the circular harmonic matched filter, or the composite circular harmonic matched
filter. The present work describes new examples leading to very high selectivity filters retaining rotation
invariance and reduced requirements on device resolution. Computer simulations and laboratory experi-
ments sh'w the advantages of this approach.

1 I. Introduction II. Rotation-invariant Filter Design
Conventional methods of optical pattern recogni- Our objective is to find an efficient filter, deter-

tion suffer from the requirement of high resolution mined by a characteristic function g(x,y), that can
recording materials and distortion sensitivity. In recognize a pattern f(x,y) in the presence of other
some recent publications' .2 a new, general procedure patterns. The recognition criterion will use the con-I was introduced that may be employed for generating ventional correlation function
spatial filters with reduced resolution requirements. C(xo,y0) - f f(x,y)g'(z- xo,y-yo)dxdy. (1)
Partial and complete rotation-invariance was demon-
strated in computer simulations and laboratory ex- and in particular its value at the origin3 nperiments employing bipolar amplitude filters, phase-fit0s -a c o (r,8)g(r,)rddr. (2)
only filters, and composite phase filters. C() j ~,)G~ r6r~

In this work we show that a good example of the new
procedure is the circular harmonic component filter in where we converted to polar coordinates for conve-U its regular complex amplitude form and also in its nience in treating the subjects of rotation and scale
phase-only form. These filters can be used as the invariance. Defining this equation as the system re-
basic constituents in a composite filter where the ad- sponse one may also define the response for an object
vantages of phase-only filters and complex amplitude rotated by an angle a,
filters are combined. The initial goal of our research f,+"(3)
project,i i.e., the use of reduced information content C(0;a) = j (r,# + aig'r,)rddr.
filters is preserved together with a high degree of dis-
tortion invariance. In this paper we demonstrate ro- Ideally one would like to keep C(Oa) constant regard-

tation invariance only but preliminary experiments less of the value of a. However, since this requirement

indicate that scale invariance can be approached with a is usually beyond practical limits one has to look for

similar procedure. various compromises. For example, the performance
of circular harmonic component filters has been inves-
tigated for completely rotation -invariant pattern rec-
ognition by Arsenault and Sheng. A filter made for a
single circular harmonic component yields a correla-I tion
tion C(0:a) = K exptjrn ). 4)

Joseph Rosen is with Technion-lsrael Institute of Technology, where K is a constant and n is the order of the harmon-
Haifa 32000. Israel, and J. Shamir is with University of Alabama in
Huntsville, Center for Applied Optics, Huntsville. Alabama 35899. ic. For intensity measurements this response is quite

Received 4 August 1987. satisfactory.
0003-6935/88/142895-05$02.00/0. In the present approach we turn around the argu-

1988Optical Society of America ment and start by defining the required response,
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C(0;a). Considering this response as a function of the
variable a it can be decomposed into a Fourier series:

CIO) c, exp(jna). (5)

Working in the Fourier plane it is useful to represent
the Fourier transform of the input patterns and the
characteristic filter functions in a circular harmonic

I decomposition:

F(p,o) = n- F(P) exp(Jno), (6)

na-(

where p and 0 are the polar coordinates in the Fourier Fig. 1. Input pattern for the computer experiments from which the

plane. It is easy to show that the value of the correla- letter P should be recognized.

tion function at the origin [Eq. (3)] can also be written
in the simple form between the letters P and F such as shown in Fig. 1.

2, Thus it is interesting to investigate this difficult caseI F(p, + a)G(p,0)pdpd . (8) with various filters made to recognize one of these

letters against the other. In a computer experimentI Comparing this with Eq. (5) and using the orthogonali- filters were generated to recognize the letter P from the

ty of the exponentials we obtain input pattern of Fig. 1. The performance with a regu-
Ilar matched filter is shown in Fig. 2(a) with the auto-

c, exp(jna) - F,(p)G,(p) exp(jna)pdp, (9) correlation peak normalized to unity. It is clear thatI p
or -- ..... the cross correlation with F is quite high, much higher
or than the correlation with the rotated P. The autocor-

S( relation peak of a phase-only matched filter is 54 times

i = F0(P)G (P)pdP. (10) as high [Fig. 2(b)] but the cross correlation with F is

i thigh too, again much higher than that with the rotated
Following the traditional way of matching a certain P. A circular harmonic component with n = 0 pro-

circular harmonic component filter to the circular har- duces the output pattern shown in Fig. 2(c), demon-

t monic component in the object one may do the same in strating complete rotation invariance but not very
the Fourier plane by taking Gn(p) =

i F(p). This filter, good selectivity. The improvement obtained by using
however, does not take into consideration the fact that a phase-only circular harmonic component filter of the

the energy content in each harmonic component is very type represented by Eq. (11) is indicated by Fig. 2 (d).
object dependent causing an appreciable reduction in Low frequency suppression for the two last experi-S light efficiency and filter selectivity. To remedy this ments was the same.
drawback we may introduce a weighting factor into The experimental results shown in Fig. 2 are, respec-
each characteristic filter function. Also, recalling the tively, summarized in lines 1-4 of Table I. Ip is the
high efficiency and selectivity obtained with phase- autocorrelation peak intensity normalized to 1 for the
only filters4.5 one is tempted to use the phase informa- classical matched filter while 1P/IF is the ratio between
tion as the major contributor for generating the filters. the peak for Pto that for F. The last column indicates
Thus we define the phase-only characteristic circular if the filter is completely rotation invariant or not.
harmonic functions,

2 , Ill. Phase Amplitude Composite Filter Generation
0F(p.) expjn0)do The good performance of the new filter is still deteri-

I I- , - ; P < <P. (11) orated by the presence of a cross-correlation peak. To
F(po) exp(jnp)do suppress this peak one must also include in the filter

function some information about the pattern to be
where ph is the size of the filter and the indistinguish- rejected. This can be achieved by using the concept of
able low frequency signal has been eliminated (i.e., C, the composite filter6 as also implemented for the circu-
= 0 outside the noted region). The useful interval lar harmonic filters.7 Figure 3 is the output pattern
depends on the pattern to be recognized and should be obtained by using such a rotation-invariant complex
chosen in such a way that it contains the distinguishing amplitude filter (see also line 5 in Table I). In princi-
information, ple one could use the same procedure with the new

The most convenient way to proceed is to invoke a phase filters; however, due to the rapid fluctuations of

specific example. Previous experiments with block the intensity over the output plane this is too difficult.3 letters indicated that it is most difficuiL to distinguish Thus to suppress the cross-correlation peaks one may

2896 APPLIED OPTICS / Vol. 27. No. 14 / 15 July 1988I
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Fig. 3. Output distribution with a harmonic component compsite
filter. I' ' -

use a smother characteristic function for the unwanted
patterns (F in this case) in a composite filter. One 6 32 64 96 127
possible choice can be the circular harmonic compo-
nent filter employed in generatin; the output of Fig. Fig. 4. Bipolar amplitude scan along one diameter of a phase am-
2(c). This way we may compose a filter where we plitude harmonic component filter.
utilize the high light efficiency of phase-only filters for
the pattern to be recognized and modify it with the
complex functions of the patterns to be rejected.

With the above considerations in mind we generate
the characteristic filter function for P according to Eq.
(11) for the n = 0 circular harmonic. For the same
circular harmonic component we generate the circular
harmonic filter for F according to the relation

GF4p) = F,4p,o)do, (12)

and combine them in a composite filter.
A scan along the diagonal of the filter is shown in Fig.

4. It turns out that for real objects, as is the situation
in our experiments, the zero-order phase-only circular
harmonic has only the values zero or 7r leading to a
binary, bipolar amplitude filter with values 1 and -1.
The plot in Fig. 4 represents such a filter made for P,
modified by the complex filter function prepared for
the zero-order circular harmonic of the letter F. The
output pattern for this filter is shown in Fig. 5.

The measurements performed on the outputs of Fig.
5 are summarized in line 6 of Table I. While line 5
represents the results for a filter composed of two
characteristic functions that served as filters in line 3, "_
the filter for line 6 is made out of a P function corre- " '
sponding to the filter in line 4 combined with an F
function corresponding to a filter of line 3. The im- Fig. 5. Output pattern for the filter of Fig. 4.
proved discrimination characteristic of the new com-
posite filter compared to Figs. 3 and 2(d) is evident.

Figure 6(c) shows the output pattern for a phase-only
IV. Laboratory Experiments circular harmonic component filter (corresponding toTo verify the practicability of the new procedure the line 4 in Table I) superposed by a line along which the
computer experiments were repeated in the laborato- intensity scan of Fig. 6(d) was obtained. Figures 6(e)
ry. We employed the same IBM PC that was used in and (f) are the corresponding patterns for the compos-
the simulations to generate the input pattern of Fig. ite filter of Fig. 4 (line 6 in the table). The correspon-6(a) and holographic filter functions like the one dence with the computer calculations is excellent.

shown in Fig. 6(b). To generate the filters the Fourier Note that the correlation peaks appear at the centroids
plane was sampled into 64 rings of equai width and the of the recognized patterns that are shifted during rota-
holograms were plotted on a regular dot printer. The tion. It is interesting that the cross correlation with
working patterns were obtained by a 25-fold photo- the additional letter 0 was also reduced with the com-
graphic reduction onto a regular photograpl-ir- film. posite filter.

2898 APPLIED OPTICS / Vol. 27. No. 14 / 15 July 1988
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Fig. 6. (a) Input pattern for laboratory experiment; (b) filter made
for recognizing P, (c) output pattern with phase-only harmonic
component filter superposed by a line along which the intensity scan
of (d) was taken; (e) output for a phase-amplitude harmonic compo-3 nent composite filter of Fig. 4 with intensity scan (f).

V. Conclusions in the actual experiments. It is also worthwhile noting
In this work we introduced a new kind of phase-only that this entire paper represents just a new example of

filter, the phase-only circular harmonic component the general procedure outlined in Ref. 1.
filter and the circular harmonic component phase am-
plitude composite filter. The selectivity and light effi- This work was partially supported by contract
ciency of the composite filters were improved by corn- N00014-86-K-0591 with the Office of Naval Research.
bining the advantages of the phase-only filters with
those of the complex amplitude filters. The superior Referewces
performance of these filters was demonstrated by com- 1 J. Shamir, H. J. Caulfie, and J. Rosen. "Pattern Recognition
puter simulations and laboratory experiments. We Using Reduced Information Content Filters," App. Opt. 26,2311
worked with the zero-order harmonic because the let- (1987).
ter P had a very large fraction of its energy in this 2. J. Rosen and J. Shamir, "Distortion Invariant Pattern Recogni-
harmonic, For the detection of F, for example, a high- tion with Phase Filters," Appl. Opt. 26, 2315 (1987).
er harmonic is better. In any case, a set of filters for a 3. H. H. Arsenault and Y. Sheng, "Properties of the Circular Har-
specific job may include many harmonic orders. How- monic Expansion for Rotation-Invariant Pattern Recognition,"
ever, to preserve rotation invariance, each filter should Appl. Opt. 25, 3225 (1986). and references therein.
contain information using the same harmonic compo- 4. J. L. Home,, and P. D. Gianino, "Applying the Phase-Only Filter
nent of all the input patterns. The experiments de- Concept to the Synthetic Discriminant Function Correlation Fil-
scribed in this paper are only a sample of those actually ter," Appl. Opt. 24, 851 (1985).
performed and they represent the most problematic 5. J. L. Homer and J. R. Leger, "Pattern Recognition with Binary

Phase-Only Filters," Appl. Opt. 24, 609 (1985).
cases. 6. H. J. Caulfield and W. T. Maloney, "Improved Discrimination in

The initial goal of the present research project of Optical Character Recognition." Appl. Opt. 8, 2354 (1969).employing low resolution devices was preserved and 7. G. F. Schils and D. W. Sweeney, "Iterative Technique for the
demonstrated by using a simple dot printer for the Synthesis of Distortion-Invariant Optical Correlation Filters."
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I Abstract

The number of interconnections in a (fully connected) backward
error propagation neural network grows quadratically with the num-
ber of neurons in the network. The memory (and time) requirements
for handling a large number of interconnections can therefore become
a serious impediment for simulations and ,mplementations of neural
networks. Another problem is that the media used by most neural net-
work implementations (neural computers) have only a limited ability
to discriminate intensity levels. In order to represent neural networks
efficiently in optical implementations (optical computers) and analog
electronic implementations, the set of possible values an interconnec-
tion strength (weight) can have, should be small. To abate these prob-
lems, the possibility of discretizing the weights of neural networks is
investigated. Weight discretization will impair the performance of the
neural network. This can be compensated by increasing the number
of neurons and/or the number of hidden layers. A new discretization
method is developed and its performance is compared to others.

I
1 Introduction

I 1.1 Background and definitions

Perceptron like neural networks can be trained by teaching them pat-
terns. A pattern consists of a set of elements (pixels). Each pixel can assume

I
I
U
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3 a ccontinuous or a discrete value. In the discrete case', the possible set of

pixel values is often limited. Typical pixel value sets, used in artificial neu-
ral networks, are: {0, 1} and {-1, 1}. Usually, a pattern is presented to the
neural network by feeding each of the pixels to a different input neuron, i.e.
a neuron of the first layer of the neural network. Therefore the number of
input neurons is equal to the number of pixels in the pattern.

Most artificial neural network simulations consist of two phases : a train-
ing or learning phase, and a recall or use phase. During the training phase
patterns are presented to the network. The interconnection strengths (also
called synaptic strengths or weights) of the neural network are adapted
conform these patterns by means of a neural network learning rule (as for
example the backward error propagation learning rule). If the weights are
stabilized, the network is called fully trained. During the recall phase input
patterns are presented to the neural network. Based on the fixed weights,
corresponding outputs, which are the activation values of the neurons of the
highest layer, are generated by the network. This form of neural network
training is called off-line training. Off-line training is often crucial, since it
separates the normally time consuming training from the recall process and
therefore speeds up the use of the neural network tremendously.

In 'neural network learning rules with a teacher', two patterns are pre-
sented to the network: an input pattern and a target pattern (the 'teacher')
which is the desired output for the neural network. In these networks the to-
tal output of the network has to converge towards the target pattern; i.e. the
activation values of the output neurons have to converge towards the pixel
values of the target pattern. In auto-associative learning the input patterns
are the same as the target patterns. Auto-associative learning is therefore
used to train the neural network to remember a set of patterns. One of
the main applications of auto-associative learning is image reconstruction
or recalling a pattern if only a partial or disabled input is available. For
example: a knowledge base which can handle fuzzy data.

In hetero-associative learning the input and target patterns are usually
different. Hetero-associative learning is therefore used to train the network
to associate each of the input patterns with its corresponding target pattern.
For example: association of geological information of a certain geographical
area with the presence of fossil fuels there.

S1'Be aware of the difference between discrete weights and discrete pixel values.

I
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1.2 Problem definition

Since the number of interconnections in a fully interconnected back-
propagation neural network grows quadratically with the number of neurons
in the network, the storage (and time) needed for handling them is often
a problem for neural network simulations and implementations. Discrete
values (from a limited set) use less storage and can be handled more eco-
nomically than continuous values. Therefore, discretization of the weights
is investigated.

Discretization is essential for all kinds of implementations of neural net-
works, since most information media used can only discriminate a small set
of intensity levels. For example optical implementations (optical computing)
[Caulfield-88] and analog electronic implementations [Thakoor-861.

The research goals for the work presented in this paper are to develop
discretization methods for back-propagation neural networks, to create a
software environment for the simulation of neural network weight discretiza-
tion, to test the discretization methods by computer simulation, and to find
rules of thumb for expanding the neural network in order to compensate
for the loss of information capacity due to the discretization of the weights.
Before going to the discretization methods, some related work is discussed.I
1.3 Prior work

I 1.3.1 Hopfield model

In his famous 1982 paper, Hopfield [Hopfield-82] studied a 'clipped'
weight matrix (Tii). He replaced Tij by ±1, the algebraic sign of Ti. The
purposes were to examine the necessity of a linear synapse supposition (by
making a highly nonlinear one) and to examine the efficiency of storage. He
found little performance2 degradation. The number of recallable patterns
was (analytically) of the number with linear Tij's. Thus severe discretiza-
tion causes only mild degradation. To restore performance, the number of
neurons would have to be increased by 1.

21n this paper, the 'performance' of a neural network is its ability to learn (and recall)
a certain amount of information.

I3
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1.3.2 Winner-take-all-models

Stirk et al. [Stirk-87] addressed a variety of non-Hopfield models from
the viewpoint of performance sensitivity to analog optical inaccuracies. The
results for simple winner-take-all networks are bad. Furthermore "big N"
cases (N = 64) are significantly worse than "small N" (N = 16) cases.
Optics seems advantageous over electronics only for very large N, say, 10
to 106. This means optics is accurate enough only for small N, but small N
is probably better done electronically.

1.3.3 Farhat's adaptive method

In a paper showing how to implement large neural networks (103 - 104

neurons), Farhat et al. [Farhat-86] reformulate the Hopfield model for two-
dimensional inputs and outputs and four-dimensional interconnects. They
clip the interconnection matrix in various ways {0,1), {-1,1}, {-1, 0,1},
etc. and find that with "adaptive thresholds" the {0, 1} interconnection pat-
tern (easy to implement optically and electronically) can achieve the same
performance level as a multivalued interconnection pattern. In effect, they
have restored the 1 loss observed by Hopfield by using adaptive thresholds.

U 1.3.4 Summary of prior work

What is known from these prior studies is that some neural network
designs are far more noise prone than others and that compensatory methods
such as adding more neurons or allowing adaptive thresholds can restore the

* Iperformance of the network.

3 2 Discretization of back-propagation networks

2.1 Approach

Among the multi-layer neural network learning rules capable of both
auto-associative, and hetero-associative learning, the backward error prop-
agation learning rule, also known as back-propagation or error propagation

I4
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[Werbos-74] [Rumelhart-86], is the most widely used and is simple to use
[Heclt-Nielsen-881. The back-propagation learning rule was therefore cho-
sen for the experiments. The experiments are based on the discretization
methods which are described in paragraph 2.2.

The number of neurons per layer can vary; N indicates the number of
neurons in layer 1 (1 < 1 < L), where L is the total number of layers (or slabs)
in the network including the input and the output layer. The interconnection
weights between two layers of a neural network can be represented by a
matrix W,ij, here I represents the level of the matrix (1 < I < L). The
level I is the ordinal number of the lower one of the two layers connected by
W,ii. The indices i and j determine the ordinal number of the neuron in the
lower and upper layer respectively. The weights (W,,ij), as used in ordinary
back-propagation models, can theoretically assume any (continuous) value:

-00 < <00.- -0 0 < W C j 
o .

The used discretization methods produce discrete weights (W/i). in
general there are D discretization levels, where D is a finite integral number.
Since the set of desired discretization values can be mapped on any sequence
of numbers using a bijection, any set with the same cardinal will satisfy. In
this paper the choice is made for a sequence of consecutive integers equally
divided among positive and negative numbers :

Wtdi D +1 I -_-- - 1, 2,..., D .

Discretization of the weights will impair the performance of the neural
network, because there is a loss of information capacity. This is compensated
by increasing the number of neurons and/or the number of hidden layers of
the network. In other words: discretized weights contain less information
than continuous ones; this is compensated by using more of them. The used
discretization methods are discussed in the next paragraph.

2.2 Three discretization method .

2.2.1 The multiple-thresholding n,, rod

The multiple- thresholding method is the simplest of the three discretiza-
tion methods used. It starts by fully training the neural network, using the

5
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back-propagation learning rule; i.e. iterate (over steps 2 till 4 of the al-
gorithm in appendix A) until convergence3 is reached. Then discretize the
continuous weights into discrete valued weights using a nonlinear function
(usually a multiple-threshold). The weight matrices so obtained are re-
ferred to as the discrete network. The original set of weight matrices with
continuous weights is called the continuous network. Chiueh and Goodman
[Chiueh-88] have applied this method using three discretization levels. They
found that about 15%-50% of the networks did not work.

2.2.2 The direct discretization method

3 In the direct discretization method, the neural network is initialized with
discrete weights, which have random values within the discrete range. The
forward propagation is similar to the normal back-propagation learning rule
(step 2 of the algorithm in appendix A). During the backward propagation
(step 3 of the algorithm in appendix A), the weights axe updated only if the
difference in weight (AWj) is big enough to change the weight into oneU of the other possible discrete values. This method does not work for the
standard back-propagation learning rule (see appendix B for a proof).

I
2.2.3 The continuous-discrete learning method (CDLM)

1 This new developed method, schematically shown in figure 1, starts off
with the multiple-thresholding method (paragraph 2.2.1, and (a) to (f) in
figure 1). Next the original input pattern (a) is fed (h) into the discrete
network (g). The outputs obtained by forward propagation (step 2b of
appendix A) are compared (i) with the target pattern (e) and the errors
(6's) are back-propagated (j) through the continuous network (c). Next,
the weights of the continuous network are discretized (f) as before and the
process starts all over again until the system reaches convergence. The fully
trained discrete network (g) can now be used for the recall phase.

This approach leads to an increase in the total number of iterations
3 From now on "reaching convergence" will stand for reaching of the convergence ri-

terion (see paragraphs 1.1 and 3.1) or another limiting (normally time-based) facto,, e.g.
the maximum number of iterations allowed. "Convergence" itself will stand for converging
into the desired range (o-range), as opposed to convergence to any value.
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needed. The process can be speeded up by skipping the full training of the
continuous network, since starting with a fully trained continuous network
is convenient, but not necessary.U
3 Evaluation of the discretization methods

3.1 The back-propagation model used

i The experiments performed are based on the back-propagation learn-
ing rule. The characteristics of the back-propagation model used are: it
is fully connected between adjacent layers, it has no intralayer connections
i.e. connections between neurons in the same layer, and no supralayer con-
nections i.e. connections between neurons that are not in adjacent layers
(Rumelhart-86, figure 8.3]. The following assumptions are made: a nega-
tive weight is inhibitory, a zero weight means no connection and a positive
weight is excitatory. Thus, in spite of the fully connectedness (between ad-

jacent layers), the situation of two neurons without an interconnection can
be represented theoretically in this way.

The patterns used to train the network were free of noise. They are
presented to the neural network as a set of pairs of patterns. Each pair
consists of an input pattern and its corresponding target output pattern.
A pattern consists of a rectangular matrix of pixel values (height x width)
which is mapped onto the one dimensional set of input neurons (the neurons
in layer one). Let h' be the height of the input patterns and w" the width (i
stands for input). The pixel value of input pattern j (pi,,) is mapped on
input neuron (m - 1)w' + n, where m indicates the row of the pixel in the
pattern (1 _ m < hi) and n the column (1 < n < w'). The patterns in the
set, which are presented in the order they are provided by the user, are fed
repeatedly into the input neurons of the neural network until convergence is
reached. The convergence criterion used is: when all the activation values
of the output neurons reach their c-range. An c-range is the range near a
desired output, determined by the deviation parameter (c). The deviation
parameter is the maximum amount that an output activation value may
deviate from the target pattern value.

I7I
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3.2 'Implementation

3.2.1 Software specification

In order to perform the discretization experiments with all the necessary
flexibility, a portable (machine independent) back-propagation software en-
vironment was developed by the author using the PASCAL programming
language [Jensen-78]. Th.C main part of the software has been developed on
a personal computer. When some of the experiments took more than 24
hours to run on the personal computer, changing over to a Cray X-MP/24
supercomputer seemed a good idea.

Some of the flexibility criteria for the software environment were : the
capability of handling both auto-associative and hetero- associative learning,
changing the pattern size (height and width), the number of patterns, the
learning rate (7q), the number of layers, the number of neurons per layer (for
each hidden layer), the number of discretization levels, the deviation param-
eter, and the maximum number of iterations for the (continuous-discrete)
learning method, also the ability of choosing a discretization method, an
initialization scheme for the weights, and a pixel value set.

The most important outputs of the simulation system (for both the con-
i tinuous and the discrete network) are:

* the stop criterion : whether the desired output is reached (within the
c-range) or the number of iterations reached its maximumI the output values (activation values of the output neurons) after each
iteration, if desired

e the number of iterations made

* the number of errors made (output activation values that reached un-
desired values)

* the number of output neurons that did not reach the desired output
(within the c-range)

* the maximum deviation (between actual output activation value and3 the desired output value)

The user can choose which outputs are desired for specific experiments.

I
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3.2 2 Methodology

The most promising discretization method is the CDLM, because the di-
rect discretization method does not work, and the CDLM easily outperforms
the multiple-thresholding method because the first includes and improves
the second method.

Two approaches were taken to test both the CDLM and the multi-
threshold method. First a systematical 'search' through the state space of
possible experiments. The starting position was the smallest network possi-
ble and using two discretization levels, since this is the preferred number for
most neural network implementations. The next variable to vary is there-
fore the pattern size which is the same as the input size. Then both auto-
and hetero-associative learning were tested. The number of patterns was
the next variable to vary. This meant starting off with a two layer system,
which would be enlarged in further experiments. The number of possible
experiments was growing exponentially, a second approach was taken.

Here, the collection of patterns was fixed. This means a fixed number of
patterns, a fixed pattern size, a fixed number of input and output neurons
and, in this case, a choice was made for hetero-associative learning. The
central parameter in this approach is the number of discretization levels.

3.2.3 Parameter definition

This paragraph discusses the parameters which were kept constant in
most of the experiments. For perfect recall (i.e. output activation values
are within their c-range), using noise free inputs, it turned out that the
higher the learning rate the faster the convergence. Besides dedicated ex-
periments, the value of the learning rate (qi) was kept at 0.5 [Caudill-88].
The value used for the deviation parameter (c) is 0.05. Random values in
the range [-0.1,0.1] were used to initialize the weights. The pixel value set
used is {-1, 1}. For the nonlinear function required in both the multiple-
thresholding method and the CDLM, a multiple threshold with rounding
off to the nearest pixel value was used. A typical figure for the maxi-
mum number of iterations is 20,000. The local thresholds (O's) or biases
[Rumelhart-86, p331-] were kept zero.

In the second approach a number of variables were fixed in order to limit
the state space. These experiments used hetero-associative learning, three
by five pixel patterns, a learning rate of 0.5, and two to four layers.
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1 3.3 ftesults

"Being able to learn and perfectly recall (associate) a set of noise free
patterns" is taken as a measure for comparing the performances of contin-
uous and discrete networks.

What could be expected intuitively, is confirmed by the experiments: the
performance of the CDLM is better than the performance of the multiple-
threshold method. The outputs of the multiple-thresholding method were
often outside the e-range. Sometimes, wrong results were obtained when
rounding 4 was applied to the outputs. In general rounding can be used to
obtain a {0, 1)-result from an output neuron that did not converge into the
c-range.

The CDLM on the other hand usually achieves much better results. The
first approach (see paragraph 3.2.2) emphasized the performance restoration
of the neural network using the minimum number of discretization levels,
which is two. In the case of associating one set of two patterns by the
simplest network of one input neuron, one output neuron and a variable
number of hidden layers and neurons in them, a two level discretization
works very well (see figure 2). The two layer network does not converge to
a value within the c-range but gives the right answer after rounding. The
performance of a three layer system with one neuron in the hidden layer
is worse than the two-layered network. But adding neurons to the hidden
layer increases the performance. With five neurons in the hidden layer the
c-range of 0.05 is reached. In figure 3 the situation for four layers is depicted.
In order to reach c-accuracy, the minimum number of neurons needed in the
hidden layers is (5&3), (2&4), and (1&5) neurons in the second & third layer.
If two patterns are stored, the graph (see figure 4) is less smooth but the same
behavior can be observed. Fourteen hidden neurons are needed in the second
layer to reach c-accuracy. Note that for the three layered network with one
or two neurons in the hidden layer faulty results are produced when rounding
is used. In order to reach the right outputs after applying rounding in the
case of four layers, the minimal number of units needed in the hidden layers
is (29), (3&6), (4&5), (5&4), (6&4), (7&4), (8&3), and (9&4) neurons in
the second & third layer. However, rounding gives sometimes wrong results
for some hidden layer sizes larger than these minima. The number of extra
neurons needed to restore the performance is relatively high. Other results
showed that this relative overhead became smaller for bigger networks.3 4 From now on, "rounding" denotes rounding off to the nearest pixel value.
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3 some of the smaller networks the activation values of the output neu-
rons remained constant during the discrete training. In these cases the per-
formances of the multiple-thresholding method and the CDLM are equal.

The emphasize of the second approach is on comparing results using
different numbers of discretization levels. The pattern set consists of nine
pairs of character-like patterns. The continuous network could perfectly3associate them all after 372 iterations.

# discr. levels # iterations # non-converg. max. abberation

2 10000 67 0.88

3 10000 18 0.50
5 10000 2 0.12
7 69 0 0.00
9 47 0 0.00

This table shows that if the number of discretization levels increases, the
number of non-converging outputs decreased. A perfect recall was obtained
at seven discretization levels. Further increase leads to a decrease in the
number of iterations needed for a perfect recall. This observation can also
be made for the continuous network: adding neurons to the network leads
to a faster convergence for the continuous network (less iterations needed).

Sometimes the performance of the network reached a maximum, without
reaching total convergence. In order to compensate for this, the observed
maximum performance is stored and used as final result.

If the CDLM starts with a full training of the continuous network, the
number of iterations needed for training the discrete network varies from one
to a number of iterations comparable to the number of iterations needed for
the training of the continuous network. In this case, the total number of

iterations needed for the CDLM is therefore one to two times that of the
continuous network.

In general: addition of a new layer to the network, without increas-
ing the total number of neurons in the network, results in a performance
degradation. This can be explained by looking at the total number of inter-
connections before and after the addition of a new layer. If a fully connected
two-layered network contains N, neurons in its input layer, and NL in its
output-layer, the total number of weights is N, • NL. The number of neu-

Irons needed in an additional (=hidden) layer to have the same number of
connections is N- N

1 11
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3 4 Conclusions and future work

Of the three discretization methods proposed, the CDLM works better
than the multiple-thresholding method, and the direct discretization method
is unusable. A portable neural network software environment has been cre-
ated for performing the discretization experiments. As intuitively expected,
the lower the discretization (more discretization levels), the better the per-"formance of the neural network. But, using two discretization levels, as
desired by optical and electronic implementations, give reasonable results.
The results of a two layer neural network are usually good enough when
using the CDLM.

If the CDLM starts with a fully trained continuous network, the number
of iterations will be one t( I times that of the number needed for the full
training of the continuous network.

Future work will consist of the search for other discretization methods.
Also doing more experiments, which might bring better rules of thumb for
restoring the performance of the neural network. Furthermore analytical
analyzing of the discretization methods will be explored. Another goal is
speeding up the simulation software by optimization and vectorization of
the program code. Finally, since most of the data is multidimensional, data
visualization techniques are being designed for representing the data.S
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i' APPENDIX A

IBack(ward Error) Propagation; the formulas

In this appendix, al,i represents the activation value of the neuron i in layerI of the neural network, and ti is the target pattern value which corresponds
to neuron j in the output layer.

Back-propagation consists of the following steps:

(1) Initialize the weights ( WV'fJ ) and offsets ( E )"

(2a) agj, := input to the i-th neuron of the input layer.

(2b) zTrward propagation :

:= 1 +1, for 2<1< L
1 + e #m - -i$a-i -

(3) Backward propagation

A AWlji := 77 61+1j a1,i

where

(ti - ajj)aj(1 - aij) if I = L - 1
al+lj(1 - aj+jj)(EN'., +2]_ ,k~t-1 ai~~i,~,(1 -IC ai)~~I j2 1+,kfj) if 1 < I < L -1

next, add AWIji to WtCji

(4) IF no(t enough) convergence THEN GOTO (2a)

1
S

I



I

U

* APPENDIX B

i Proof of 'direct discretization method' limitations

The weight update formula for the highest level interconnection matrix (see
step 3 of appendix A) is equivalent to:

I ,d - aL..4)aL..j(l - aL-.1j)aL,il

since 0 aL,i _< 1 and 0 < j7 < 1:

5 W[..1,14 < j(t, -'aL..1.)aL..IAl - LII

Partial differentiation of this function shows that it has no local extremum
in the open interval (0, 1) x (0, 1) of the plane spanned by aL..j X tj. The
maximum of this function will therefore be a boundary extremum of this
interval. Since the function equals zero for both aL-lj = 0 and aL-j = 1,Itwo cases are left to be examined:

case 1: tj = 0

dGL -- "i -= aL-..j(2 - 3aL-1j)

daL-1 
2I {_ aL-1j = 0 minimumda~L,..1 =0 -. 2

da l - ,j L-lj maximum

maximum for aL-Ij -, *I A1Vwd-Lij' < 27

I
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3 case2: tj =1

IAW d_j,[ < aL-_j(1 - aL1J)21 = aL-,j(l - aL-Ij )2

dIAWL-" * = (3 aL-ij - l)(aL-i,j - 1)

- =aL-ij = 1 maximum

d- L-Ij = 1 minimum

maximum for aL-lj = * =:4 A Ljm < 4

Both cases give the same result

This is the maximum weight increase possible. So, when using less than

8f2 = 4 discretization levels, the weights will never be updated. Since
the average weight update is much smaller than this maximum, the direct
discretization method is not usable for standard back-propagation neural
networks.

I
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3 SOME THEORETICAL UPPERBOUNDS ON
THE CAPACITY OF NEURAL NETWORKS t
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3 Department of Electrical and Computer Engineering
University of Alabama in Huntsville
Huntsville, Alabama 35899, U.S.A.U

Abstract

One of the most fundamental properties of a neural network is its
(storage) capacity. It determines the practical usefulness as well as the
(storage) limitations of the neural network. So far, the capacity of neural
networks has mainly been studied for specific learning rules only.

This paper presents some theoretical upperbounds on the (storage)
capacity of neural networks. These generally applicable upperbounds are
topology independent and learning rule independent. The problem of ca-
pacity is approached from different points of view. An overall upperbound
based on combinatorics, and a tighter upperbound from information theo-
retical point of view, are given. Also incl uded is an upperbound for linear
neural networks (or discriminants).

For general reference an extensive bibliography on the subject of neural
network capacity is appended.

*Keywords

(artificial) neural networks, connectionism, neural network capacity, neural
network statics, neural network connectivity

INTRODUCTION

Much discussion is taking place about the usefulness of (artificial) neural
networks. The viability of their use depends to some extent on their limitations.
One of the most fundamental limitations is the (storage) capacity of neural net-
works. One wants to be able to store and process as much information in a
neural network as possible. The capacity issue has many impacts on fundamen-
tal and applied research on neural networks; cf. (DARPA-88). It is essential for

the work on connectivity and optimal topologies of neural networks (Fiesler-90).
Since the information presented to neural networks can be represented as

patterns, it is useful to examine the pattern capacity of a neural network. The
pattern-capacity (C) of a neural network is the number of different patterns thatI
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3 can be stored in that neural network, where a pattern consists of a set of values
called pixels, and a pixel can assume any value from a (finite or infinite) set,
called pixel value set. A pattern is said to be stored in a neural network if it can
be retrieved (within certain exactness limits) as an output from the network by
feeding the corresponding input into the network. In this paper, exact recall of
the patterns is assumed, this means that no errors are allowed in the (possible)
recall of a pattern.

Neural networks are characterized by their architecture (including their to-
pology) and their learning rules. Up till now, neural network capacity research
has been oriented towards neural netwcrks with a specific learning rule (cf.
the appended biography on capacity). In order to get an approximation of
the capacity of an arbitrary neural network, the concepts which are general
to neural networks have to be explored. To remain independent of topology
and learning rule, one has to restrict considerations to static entities like the
number of neurons in the network (N), the number of weights (W), and in case
of discrete neural networks: the number of discretization levels for the weights
(D), and the pixel value set cardinaliiy (d), which is the number of different
(input) values possible for a pattern pixel. A discrete neural network is defined
as a neural network with discrete interconnection strengths (weights). This work
is based on discrete neural networks, since all (computer) implementations of
theoretically continuous neural networks have a finite precision they can be seen
as discrete ones. For example in a computer simulation of a continuous neural
network with b bit number representation, the number of discretization levels,
and the pixel value set cardinality, can maximally be 2b. An introduction to
discrete neural networks and related definitions are described in (Fiesler-88).

AN UPPER UPPERBOUND

Every weight in a neural network can assume D different values, and there
are W weights in the network. Therefore, using plain combinatorics, the number
of different patterns that can be represented (this is the number of different
distinguishable states) in a neural network is

DW.

An input pattern is copied into the activation values of the input neurons. There
are N, input neurons and each can assume one of the d different possible values.
The number of different input patterns that can be presented to a layered neural
network is

d/l.

In order to store information in a neural network, it has to flow through the
input neurons. Hence, the smallest value of the two equations given above,
will be the information bottleneck for the network. The upperbound for theI
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3 pattern-capacity is therefore

Minimum (dNl, Dw).

Although, since for multi-layered neural networks N: <W, for most networks:SdNl < DW and in this case the upperbound will be dIVl.

3 A TIGHTER UPPERBOUND

This number, which is a theoretical capacity upperbound, can be lowered
if information-capacities are considered. Information theory defines the total
amount of information, or entropy, of a system to be Pi log p7', where pi
is the probability of occurrence of state i of the network, 1 < i < n. (The nota-
tion "log" stands for any base logarithm; a convenient choice is base D.) The
maximum amount of information is obtained when all pi's are equal (Hamming-
80); i.e. pi = n- 1 , and the total information is log n. An upperbound for the
information-capacity of a neural network is therefore

I logDW = WlogD.

Analogous, the information-capacity of an input pattern is

5 log dNl = Ni log d.

If the number of patterns to be stored is C, the total input to the network is
then

CNt log d.

If we let C be the pattern-capacity of the neural network, this quantity has
to be equal to the total information in the neural network. Therefore, if we
combine both formulas, we get an upperbound for the pattern-capacity of a
neural network of

W log D

N, log d'

This results, applied to fully interlayer connected neural networks gives, for a
two layer network (L=2 and W=NN 2 ):

I N2 log D
5log d

and for an auto-associative neural network (N = NL) which has three layers
(L=3 and W =N2 (N +Na)): 22lg

C 2N<logDI - log d '

where the pattern-capacity is directly proportional to the number of neurons in
the hidden layer, since D and d are constants.I
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UPPERBOUNDS FOR LINEAR NEURAL NETWORKS

Linear problems are well understood mathematically (Pao-89). The non-
linearity of neural networks is what makes them hard. So in order to get a grip on
the upperbound of the capacity of neural networks, the non-linearity is stripped
for a moment and linear neural networks (with interlayer connections only) are
observed. A two layer linear neural network with only interlayer connections
is known as a (linear) discriminant. Observe a simple linear neural network,
where

NI-I
I atj = W,jl-,,j for I < j < N,

in which aj,j represents the activation value of neuron i in layer I. For the
input layer (I = 1), this value is equal to the pixel value for the corresponding
input neuron of the network. For a two layer system the system consists of
N2 equations. In these equations the interconnection weights are the variables.

In a fully interlayer connected neural network there are W = N, N2 weights,
and therefore N1 N2 degrees of freedom (independent variables), which means
that the system of linear equations is completely determined by giving N N2
variables a value.

When a pattern is presented to the two layer network, the activation values
are known and this gives N 2 equations in NIN unknowns. The number of
degrees of freedom of a system of E linear independent equations in U unknowns
is£s Maximum(U - E, 0)

So in the previous case, the number of degrees of freedom is N1, N 2 - N 2 =
N2 (NI - 1). Each new pattern, which has at least some component orthogonal
to the other patterns, gives a new set of N2 equations in the same variables.
Thus after P patterns, NN 2 - PN 2 = N 2 (NI - P) degrees of freedom are
left over. A system of linear independent equations is solved when there are
no degrees of freedom left. This happens when P = N1 . So an upperbound
for the pattern-capacity of a two layer neural network when considering linearly
independent patterns to be stored completely (error-free) is: N1 .

If we extend this to more layers and assume the activation values to be
known, we have to incorporate the other layers as well and get as an upperbound
for the pattern-capacity for a multi layer linear neural network:5 L-1

C< Z NI = N-NL.
t=1
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5 SUMMARY

In this papei a number of analytically derived upperbounds on the (stor-
age) capacity of neural networks are presented. They are independent of the
network topology and the learning rule used. It is shown that the maximum
amount of information that can be stored in an arbitrary neural network is nor-
mally limited by the number of input states, which is exponential in the number
of input neurons.

For an exact recall, the capacity upperbound can be 'compressed' to an

amount which is proportional to T--; the total number of weights divided by

the number of input neurons of the network. For layered neural networks, with

up to three layers, the upperbound becomes linear in N2 , the size of the second
layer.

An upperbound for the number of partially orthogonal patterns that can
be stored in a linear neural network is proportional to N, the total number of
neurons in the network.
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3 Abstract

One of the main problems in current (artificial) neural network engineering is
the lack of design rules for neural networks, i.e. how many layers and how many
neurons per layer to choose for a fully connected layered neural network with
bidirectional weights. A theory is developed which optimizes the topology of the
neural network to allow a maximum potential storage capacity with a minimum

* amount of neurons.

Keywords: (artificial) neural networks, connectionism, neural network topology, neu-
ral network statics, neural network connectivity, neural network capacity

i Introduction

Although the field of artificial neural networks, hereafter called neural networks, is
a rapidly growing one, some basic questions remain unanswered. One of the most im-
portant problems is how to configure a neural network. Many neural network learning
rules apply to (fully connected) layered (first order) neural networks with bidirectional
weights (or interconnection strengths). A bidirectional connection is a connection that
has the same connection strength when used for either forward or backward propaga-
tion. (If a neural network uses only unidirectional propagation, the interconnection
topology of the neural network is identical to one with unidirectional connections.)

For layered neural networks in general, one needs to determine the number of layers
and the number of neurons per layer. Since neural networks are used for processing
and storage of information, the 'optimal' topology for a neural network is usually one
which allows an optimal (information) storage capacity. Since the interconnection
strengths (weights) contain the information of the neural network, the information
capacity is proportional to the total number of weights in the network [1]. A fully
connected neural network will therefore have a higher information capacity than any
other interconnection scheme. However, in layered neural networks there are several
types of connections.I

I
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i Counting Weights

In layered neural networks one can discriminate three classes of connections:
Definition : An interlayer connection is a connection between neurons in adjacent layers
of the neural network.
Definition : An intralayer connection is a connection between neurons of the same layer
of the neural network.
Definition : A supralayer connection is a connection between neurons that are neither
in adjacent layers, nor in the same layer of the neural network.

A sub-class of intralayer connections are self-connections:
Definition : A self-connection is a connection which originates and terminates at the

I same neuron.
A neural network can have all possible connections:

Definition : A plenary neural network is a neural network which has all possible in-
terlayer, intralayer, and supralayer connections; in other words it is a 'truly' fully
connected neural network.

The total number of weights (W) for a neural network with L layers, which has only
interlayer connections (i.e. they have neither intralayer nor supralayer connections) is
the sum of all possible connections (between each pair of adjacent layers) in the net-
work. The number of connections between two adjacent layers in a fully interconnected
network is equal to the product of the number of neurons in each of the layers. In order
to get the total number of weights for the complete network, a summation is needed
over the layers:

L L
W EZW, ZNi- I N,

I1=2 1=2

where W, stands for the number of weights between layer I - 1 and 1, and N, is the
number of neurons in layer 1. Layer 1 is the input layer and N, the number of input
neurons.

In the case that the neural network has both interlayer and intralayer connections,
a number equal to the number of possible connections within a layer has to be added3 for each layer. The total number of connections becomes thus:

ZN,_INi + [L(N1 ± 1) + T(N]1)

I---2 122

where the part between square brackets is optional; it is deleted when no intralayer
connections are present in the input layer. The ±-symbol denotes the option for having
self-connections. If self-connections are present, addition has to be used, and substrac-
tion otherwise.
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The number of weights in a network which, besides interlayer connections also has
supralayer connections can be calculated by summing over all the neurons in all the
layers, multiplied by the number of neurons in all the layers of a higher index:

L L L-1m

: Nj-1 E N. -" E E NINm+1.
1=2 m=1 m=111

When combining the previous two formulas, the total number of neurons is obtained
for a plenary neural network, which has all three types of connections:

( N 1 L 1)- - ±-
1=2 m M=

~where the part in square brackets is again optional and used when intralayer connections

WI (NJ± 1) + E N1_1 1 N1, .
1=1 1---2 M=1

Since a plenary network can be represented as a fully connected graph, the previous
i equation is equal to:

(this is the number of edges in a fully connected undirected graph with N vertices);
where N is the total number of neurons in the network: N = " N1.

3 Optimal topologies

Depending on the type(s) of interconnections present, the capacity of a neural
network can be optimized by varying the topology of the network. Plenary neural
networks are a trivial case; there topology is always optimal, since they can be seen
as a fully connected (undirected) graph, whose number of edges only depends on the
number of vertices.

For layered neural networks with only interlayer connections (the most used topolo-
gies), the configuration topology does make a difference. Let the total number of
weights W = Y'-2 N1 -.1 N1 , as defined before. For a two layer neural network L =
2, W= N1 N2, and N = N,+N 2. The total number of weights, W can be represented
as a function of N: W(N) = NjN 2 . Using N = N, + N2 , W can be transformed into
a function of NI: W(Nj) = NI(N-N). To find the optimal topology, the derivative
of W(N 1 ) with respect to N1 has to be determined: dW , = N - 2N 1 . A maximum
is found and this gives the optimum:

N 2  N
W= - at N, = N2 = -.3

I



Since the number of neurons and the number of weights are integral numbers, W =
r and N2 can be choosen or [NJ.
The three layer system L = 3 and W = N2 (NI +Ns) gives analogously: W(Ni, N2 ) =

W(N 2 , N3 ) = N 2 (N - N 2) or W(NI, N3 ) = NI(N - N1 - 2N 3) + N3(N - N3). Max-
imization gives a maximum at N2 = E and N3 = N - N 1 . The maximum for W is

again [4J
For more than three layers, the outcome of the maximization procedure is: drop

all but two or three layers, and the same maximum holds; in other words multi-layer
systems (>3) layers are not optimal. This outcome coincides with the neural network
interpretation of Kolmogorov's theorem, which states that the capabilities of a neural
network with more than three layers does not exceed the capabilities of a three layer
neural network with 2N 1 + 1 neurons in the hidden layer and only interlayer connections

[21.
For neural networks with interlayer plus intralayer connections, a fully connected

two layer network is equal to a two layer plenary neural network. It has W =
(Ni +N2)(Nj+N 2 +1) -= L(N + 1) weights. So there is no absolute maximum; any distri-

bution of the neurons over the two layers gives this "maximum". For more than two
layers the outcome of the optimization is: drop all but one or two layers and distribute
the neurons over these layers. The maximum W is therefore the same as for the plenary
neural network.

Layered neural networks with interlayer and supralayer connections have a different
optimum: Since two layer neural networks do not have supralayer connections, the
smallest networks to study here are three layer networks: L = 3 and W = N1 N2 +
N, N3 + N 2 N3 . W can be written as a function of two variables again: W(N1 , N 2 ) =

Ni(N - N, - N2 ) + N2 (N - N2 ), W(N, N) = N 3(N - N, - N3) + NI(N - N), or
W(N 2 , N3 ) = N2(N - N2 - N3) + Na(N - N3 ). Maximization gives a maximum at
N, = N2 = N3 = 1. The maximum for W is e. This can be generalized and proven

for any number of layers. The maximum is found at N = N , for L > 2 and 1 < I < L,
and the maximum is

W=N 2 (L - 1)
2L

Thus in the case of both interlayer and superlayer connections: Since the number of
neurons is a positive integer, each layer gets at least LN neurons, and the rest of the
neurons (N - L LNJ) can be distributed over the layers. The number of weights is also
a positive integer. The floor function can only be applied for neural networks with less
than eight layers, since the maximum deviation between the optimal and the actual3 number of weights can be as large as L 'weights'.

I
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3 Conclusions

The optimal topology and maximum number of connections for all the interconnec-
tion schemes are given in this table:

interconnection optimal topology

3 structure Lmin Lma, N,'s Wmar

inter 2 3 N
"__ _ _ 1)

inter & intra 1 2 any distribution N(N+)

ne~ur N inter & supra 3 no max. VI : N, T 2L

plenary 1 no max. any distribution N(N+)
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The unlimited operating rate of parallel processing sys- Fig. 1. General building block of an optical system: two planes
tems as suggested by various proposed architectures is ques- with separation R and effective aperture D interconnected by propa-
tionable. Like the limitations imposed by the Von Neuman gating light. The two rays represent maximal and minimal path
bottleneck on serial processing it appears that we also have a length in a diffractive interconnection.
fundamental limitation on the possible ultimate speed of
parallel processors. where v is the frequency of the illuminating light. From the

Accepting the fact that the universal speed limit is the last two equations one may also derive the skew:
i velocity of light, we may estimate the time for performing a 244

single processing step on a planar array of n X n signal t fi Ta..? - T - n(f/No.)21[l+f/No.)_11. (7)

elements. The two planes PI and P 2 in Fig. I represent

optical elements (transparencies, lenses, holograms, spatial To get an idea about the magnitude of these time delays let
* light modulators, acoustooptic cells, etc.). To perform any us assume visible illumination with a frequency of 5 X 1014

processing operation light must be propagated between Hz, anf/No. of 2, and an array of the order of a TV frame with
these two planes to interconnect all the signal elements of n = 500. Substitution of these numbers results in Trm = 1.0
one plane with those of the second plane. These intercon- ps and t = 1.2 ps. In an actual system involving a number of
nections may be achieved by waveguides or, globally, by processing planes and possibly waveguides, these numbers
diffraction. In any case the processing time will be limited may have to be multiplied by an appreciable factor. For
by the transit time of light between these two planes. Fur- example, a simple optical correlator (4f system) has a factor

thermore, there will also be a skew-a differential time delay of 4 leading to a differential delay of 4.8 ps with a total delay
i between the various interconnection paths (for example, of 40 ps.

paths 1 and 2 in the figure). The above time delays are quite small compared to current
To estimate the time delays involved in the processing we processing facilities and presently available device respons-

consider free space propagation, denote the distance be- es. However, considering proposed operation with femtose-
tween the two planes byR, and denote the operating aperture cond pulses these delays may become the ultimate limiting
diameter by D. Assuming diffraction-limited resolution, factors. The overall time delay must not concern pipelined

the diameter of each signal element (pixel) may be given by systems but it may become quite important in complex ar-
the diffraction-limited spot size, chitectures such as those involving feedback loop operations.

a - 2.44R/D - 2.44Mf/No.. Equation (7) indicates that the overall time delay increases
with increasing f/No. while the skew approaches the limiti where (f/No.) is the f/number of the optical system and X is 1.22n/p. Thus these effects should be taken into consider-

the illuminating wavelength. Thus for our n X n array we ation for very high speed architectures. For example, by
shall need an aperture size, using optical fibers or other guiding elements one may solve

D-na - 2.44nX(f/No.). (2) the skew problem but by doing this the pipelining delays willD ff na fi .44n(//o.).(2) be increased.
The maximum delay time is induced on a diagonal trajectory, In conclusion, we note that the limiting time factors were

1 estimated for thin optical elements in free space. The fact
Tma, ! _ (R2 + D2 )"/, (3) that the vacuum velocity of light is a universal speed limit

may indicate that we are dealing here with a universal bottle-
where c is the velocity of light, while the minimal time is neck influencing all possible approaches to parallel signal

- R/c. (4) processing. This bottleneck is proportional to the operating
Trm R.wavelength suggesting that computing with visible or IR

These two time delays may be expressed by the f/No. using light may be just an intermediary step toward an even more
Eqs. (1) and (2): advanced approach.

Tma, - 2.44 n(f/No.)[1 + (f/No.)211/2, (5) The author is pleased to thank J. F. Walkup for reading the

manuscript and making some useful comments.
2.44 This work was partially supported by the Office of Naval

S.4_4 n(/No.), (6) Research under contract N00014-86-K-0591.
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The objective of this research is to advance the performance

characteristics and applications of ccmpact integrated acxisto-cptic and
aiuto-eectroctc Bragg modulator modules. Mhe following specific

research task were proosd and pursued:

i 1. Analysis on Acousto-cptic Bragg Diffraction in Channel-Planar

Waveguide

2. Identification of Existing and New Ar tectures and Algorithms

3. C=ipariscn between Acousto-ctic and Electro-otic Modulation/3 MUltiplication Schemes

During the course of this research significant progress was made in eachi

A summary of acccmplishments on each task now follows:

1. Analysis On Acx23-to-=gtic DOM Diffraction In Channel-Planar wave~tide

i Fig. 1 shows the configuration of the integrated acusto-cptic (AO)
Bragg modulator module[l] that has been analyzed. An array of light beams

coupled into the cdannel-waveguide array at the irput endface of the
Lib 3 channel-planar caiposite waveguide are exparded and collimated by
the titanium-irdiffused prototl-e harxed (TIPE) waveguide lens array(2]

before incidence upon the surface acoustic waves (SAW) generated by the
i interdigital SAW transducer. The array of Bragg-diffracted light beams

are then collected and focused upon the output endface of the ccmpsite
WaVeguide by the large-aperture = lens. By varying the carrier
frequency of the rf driving signal the Bragg-diffracted light beans are

scanned alon the output endface.

At the outset a potential distinction between the AO interaction
geometry unler consideration and the comventional one that involves a

single SAW and a single light beam in a purely planar waveguideI
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substrate[3] was identified. This potential distinction was based on the

fact that op.ical anisotropy and the very small aperture of the multiple

incident light beams (for example, 5 to 10ATm) and thus the resulting
spreading of the light beams (by diffraction) will significantly affect

the perforanc characteristics of the device module. However, a

subsequent numerical calculation shows that to a good approximation the

spreadin angle can be determined using a conventional formula and since

the microlers array is placed at a short distance from the output edges of

the dhannel-waveguide array, no significant effect through optical

anisotropy has been conclixed. Accordingly, it has been concluded that

the ultimate performa characteristics of the integrated AD Bragg

xmodulator modle such as diffraction efficiency, rf bandwidth, rf drive

power, nonlinearity, and dynamic range are practically identical to that

of a conventional AD Bragg modulator in a planar waveguide(3].

2. Identification Of Existing And New Architectures And Algorithms

The integrated AO Bragg modulator module of Fig. 1 was found to be

rather inconvenient and limited in applications such as matrix-vector and

matrix-matrix multiplications as one set of input data must be used co

modulate the input light beams. 7hs is so because laser arrays (such -s

diode laser arrays) with capability for indeperxent modulation of each

individual laser are not commercially available. Consequently, much

efforts were made to identify and explore other new arditectures.

The two device architectures that have been identified and explored

are shown in Figs. 2 and 3. The basic architecture common to both modules

3 is a comosite waveguide in which a dannel-waveguide array, a planar

waveguide, a linear TIPE microlers array, Bragg modulator arrays, and a

large-aperture TIPE lens are integrated in a omm NkO 3 substrate.

The channel waveguide array (only four elements are shown) is aligned wth

the linear microlens array. The two device modules presented in this

report utilizes, respectively, a herringbone Bragg electrode array (Fig.2)

and a SAW transducer and conventional Bragg electrode array combination

(Fig. 3). The microlens array was used to capture, expand, and collimate

the multiple light beam from the channel-waveguide array before their

incidence upon the resulting electro-cotic (ED) and AO-EO Bragg
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i diffraction gratirgs, while the large-aperture lens collects and focases
the multiple Bagg-diffracted light beams upon a #otodetector. In

cperation, "uultiplication" of data is carried out by the Brag

modulators, while "addition" of the resulting products by the

large-aperture integrating lens.

Since this particular program had not provided any funds for

fabrication and testing of the two device modules, actual design,
fabrication and testing were subsequently carried cut trwugh other

Programs. Some of the experimental results have been published(4,5].

In sumary, the two device architectres identified and explored have
been shown to be capable of realization of high-packing density

multichannel integrated Optic modules with applications to data process".u

and cxxigz including progrnmable correlation of binary seqences £6).

1 3. gcMaarison Between Acosto-ootic Aid Elecic Modulation/

Multiplication Schemes

A. Agusto-ootic Modulation/Multiplication Scheme

Efficient and wideband AO Bragg diffraction by the SAW was

achieved in the integrated AO-EO modules. In contrast to their EO

aInterparts these integrated AO modules have the unique capability to

irput the data in a pipeline fasion via the SAW. Since the number of

operations per second increases with the nmber of input light beams it is

desirable to design and fabricate large arrays of charel waveguides and

microlenses with as small an aperture as possible. Using 60 ,m as the

aperture of the linear microlens array the possibl. number of the light

diannels will be as large as 333 for a SAW propagating path of 2.0 am.3 Since the velocity of a Z-propagating SAW in Y-cut LiNbO3 is 3.5x105

cm/sec the crrespoding flow rate for the data is approximately 60 M4Hz.
Naturally, if the aperture of each microlenu element is reduced to 30Am

both the number of light channels and the data flw rate will be increased

by a factor of two. A specific application of the 10 module to optical

systolic array processing and cculting[7), namely, matrix-vector
multiplication was successfully carried out.U
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3 B. Elec=o=ic Modulation/Iftilication Sdeme

As shown in Fig. 2, the integrated E0 Bragg modulator module3 results by replacing the SA-generated AO diffraction grating with an

array of ED Bragg diffraction gratings that were created by applying3 voltages across an array of interdigital finger electrodes. Efficient and

wideband Bragg diffraction have been achieved using the electrode arrays

with 13 , periodicity and 2.0 mm aperture. specifically, 95% diffraction

at a drive voltage of 6. 0 volt and 870 1z rf bandwidth were measured[4 ].

It is 1portant to rate that the two separate electrode arrays of the

3 Herrin#cm type facilitate application and thus multiplication of tw

e sets of data. Thus, in contrast to their AO counterparts,3 these integrated B modules can accept mltiple sets of data as well as at

a mh higher rate than is possible with the SAW. This capability has

been utilized to perform matrix-matrix multiplication[6].
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1. INTRODUCTION

It is generally agreed that in the realm of computational linear algebra, particularly

the multiplication of two matrices, optical computing has an inherent speed of execution

5 advantage over digital electronics (but see Section 4). Investigators in optical computing,

have generally taken matrix multiplication algorithms directly from the mathematical liter-

5 ature and modified them for use in optical computing, some representative papers are [1-41.

Alternately optical architectures have been developed to carry out such computations, e.g.

5 One purpose of the present communication is to describe our polynomial convolution

algorithm which is an ab initio development of matrix multiplication for use in optical com-

puting. A second purpose is to consider the situation where the matrices are Alarge that

they cannot be stored jimultaneously on optical masks (hereafter termed the storage prob-

3 lem). As we will show in Section 4, the speed advantage of the methods advocated in [1-41

are compromised because the matrix elements are not equally accessible. Furthermore, we

I make plausible that the polynomial convolution algorithm is robust with respect to this

debilitating situation in that it is still possible to obtain a reasonable concurrency over the

more classical algorithms because of the simplified bookkeeping and modular structure of

the convolution algorithm.

I2
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* 2. POLYNOMIAL CONVOLUTION ALGORITHM

In view of the initial complexity of the algorithm we proceed in three stages. In the

first stage we give the explicit expressions and verify these formulae in the second stage.5 Finally, we outline a construction which leads to the various formulas.

We begin by considering the matrix product C = AB where A is of the size

n1 x n2 , B is of size n 2 x n3 , and C is of size nt x n3 , with corresponding matrix

elements: aij, bik, and cik. Let x be an indeterminate, and associate with A and B

the polynomials P(x) and Q(x)

I (n, -lI)n2n3+n, - I

P (X) E paz 8  (2.1)

m.2 n3 -1

Q(x)= qtx (2.2)
t=O

Note that the degree of P(x) is (n, - 1)n2 n3 + n 2 - 1 which involves not only the size3 of A through nj and n 2 but also the size of B through n3. The degree of Q(z) is

n2n3- 1 and only involves the size of B, namely n 2 and n 3 . The p and q coefficients3are related to the matrix elements of A and B by

I
Ps = aii, if s = ( - 1)n 2n 3 +'- 1 (2.3a)

= 0, if (i - 1)n2 n 3 + n 2  s < in 2n 3  (2.3b)

I and

3q = bjk, if t = kn 2 -j (2.4 a)

= 0, if t > n 2n 3  (2.4 b)

13



I
with: 1 < ni, 1 <j < n 2 and I < k <n 3.

We claim that the elements of the matrix product C are given by selected coefficients

I of the polynomial

5
R(x) P(x)Q(-)

n, n2 n3 -1

FZ rz m  (2.5)
5 M=0

whereI
3 T = paqm-8 (2.6)

8=0

i is the discrete convolution of the p and q coefficients. These selected rm are given by

r. = Cik , if m = (i -1)n 2n 3 -t- kn 2 - 1 (2.7)

I A formal proof (which is really a verification of the formulae) is now given. We begin

by rewriting. Eq (2.6) in the form

rn, = pq-"= aj abj, (2.8)

i where the summation in the second series is over:

I
a: s n (i-1)nn 3 +- (2.9a)

0 (i- 1)712n < s < (I - L)n 2n 3 + n 2  (2.9b)

3 -Y: t ,, -- s kn- (2.9c)

6: t , n2'n: . (2.9d)
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I The a term is simply Eq. (2.3a), while the ;3 term is the negation of Eq. (2.3b). The

-y term follows from Eq. (2.4a), while the 6 term is the negation of Eq. (2.4b). Upon

substitution of the a term into the 3 inequality we immediately see that this can only

be true

1< J < n 2  (2.10)

I In like fashion, substitution of the -1 term into the 6 inequality leads to the requirement

I that

5 m = (i - i)n 2n3 + kn 2 - 1 (2.11)

3 which is Eq. (2.7). Thus the formulae are verified.

I A construction which leads to the various formulae for p. and qt in terms of a,,

and b~k, respectively uses row vectors. Consider a row vector p whose elements we

£ denote by p. (coefficients of the polynomial P(x)) composed of the matrix elements a,,

of A and strings of zeros as depicted in Fig. IA. The range of s isI
I 0 < s < nn 2 n 3 - n 2 n 3 + n 2 - 1 (2.13a)

g consequently

pa - if s > (n, - I)n 2 n 3 + n 2  (2.13a)

= 0 , if S &n2 n 3  (2.13b)

I Furthermore the p, are related to the aj as given by Eq. (2.3a), as the reader can

verify by construction.

5
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3 In like fashion, we construct another row vector q with elements qt according to

Fig. lB. Unlike p, q has no strings of zero elements. The range of t isI
3 0 < t < n 2 n 3 -1 (2.1-)

I so that

I
qt = 0, if t > n 2n 3  (2.15)I

Within the range of t, the qt are related to the bik byI
q =bjk, if t =(k-1)n2 +n 2 -j (2.16)

which reduces to Eq. (2.4a).

g, As an illustrative example of the algorithm, consider the case where A is 2 x 2, B

is 2 x 3 so that C is 2 x 3 (i.e., n, = 2, n 2 = 2, n3 = 3). The upper limits on

3 the polynomials P, Q and R are 7, 5, and 11, respectively. The p., qt and r,

coefficients evaluated according to Eqs. (2.3), (2.4) and (2.7) are listed in Table 1. Upon

carrying out the convolution operation, Eq. (2.6), in conjur-tion with this table we have:

rl = c1l = Poql +- piqo = alibi, + al 2b21  (2.17a)

I
r3 = C12 = poq3 s- plq 2 = allbl2 + a12b22  (2.17b)

I
rs = c p I Poq5 + Pjq4 = aIIb13 + a1 2b23  (2.17c)

1 6Io
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2r7 = p q, + P7qo = a2 lbl, + a22b21  (2.17d)

rg = = pGq3 + P7q2 = a 2 jb 1 2 + a22b22  (2.17c)

I
rl = C23  Gq5 t P7q 4 = a21bI3 + a2 2b2 3  (2.17f)

IThese are, of course, the matrix elements as obtained by more standard procedures.

This completes our description of the algorithm.
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I 3. IMPLEMENTATION AND PARALLELISM OF ALGORITHM

3 In spite of the complicated looking nature of the algorithm, its implementation in

optical computing can be carried out in straightforward fashion.

I Examination of Fig. 1A shows that the matrix elements a 3 of A coded into the

vector p consists of the rows of A in which strings of zeros are interspaced. Thus all

we need to do to handle A in this algorithm is to store it on an optical mask according

5 to Fig. IA. The vector q containing the matrix elements bik is simply the columns of

B in reverse order, see Fig. 113. Obviously we need only code B as per Fig. 1B on an

3 optical mask for this aspect of the implementation. Given that both these operations have

been carried out we then proceed according to the various formulae quoted in the previous

I . section.

3 IThe parallelism of the algorithm (assuming that all the matrix elements of A and

B can be stored in primary storage) manifests itself through the corresponding p and3 q vectors. This is best seen by examination of Table 1; the first two components cf p

(i.e., all and a12) can then be combined simultaneously with (b2 l, b1l), (b22 , b 2 ),

3 and (b23 , b13 ) of the vector q. While these operations are being carried out, the last

two (nonzero) elements of p (i.e., a 21 and a22 ) are to be combined with (b2l, b1 i),

3 (b22 , b12), (b23 , b13 ). Thus we are able to carry out the manipulations leading to the six

matrix elements of C simultaneously. The general case of two rectangular matrices does

I not require any detailed comment. Consequently, the polynomial convolution algorithm is

at least as fast as the methods advocated in [2, 4] under the assumed conditions of equally

I accessible matrix elements.

I
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1 4. INFLUENCE OF STORAGE PROBLEM ON ALGORITHM PARALLELISM IN

MATRIX MULTIPLICATION

Although the issue of matrix multiplication, in the context of optical computing,

I has been cast as one of speed of execution of manipulations, this is only one aspect of

the problem as we will now see. Realistic signal processing requirements demand very

large matrices in order to achieve the resolutions necessary to fulfill the desired goals.

Because such large matrices are needed we must study the effect of storage (that is, the

extent to which all matrix elements in the two matrices under multiplication are not

3 equally accessible) on the inherent parallelism, and hence speed, of the various algorithms

proposed.

K When the matrices are small (for convenience we will let them both be square and of

size n x n), the entire arrays containing the matrix elements of A and B can reside

simultaneously in primary storage in the form of matrix masks as described in Goodman

112], then it is possible to carry out all of the manipulations such as described in the

algorithms promulgated in [1-41. Under the small n regime, it is essentially true that

3 all matrix elements are equally accessible. In fact, all the papers that we have succeeded

in locating on matrix multiplication (via optical computing) tacitly make the assumption

3 that all matrix elments are equally accessible, independent of n.

3 Let us consider, for example, the inner, intermediate, and outer product methods for

the multiplication of matrices. Reference is made to Appendix A for the development of an

3 efficient formalism that yields these representations. Examination of these representations

reveals that it is possible to perform the matrix-matrix product at two levels of parallelism.

5 At the first level, the intermediate product methods speed up the execution over the

inner product method by a factor of n. At the second level, the outer product method

I achieves a factor of n 2 over the inner product method. In fact, there are n parallel

multiplications and (n - 1) parallel additions to be performed, rather than the n3

sequential multiplications and n - n2) sequential additions required at the original

element level algorithm. Unfortunately when n is large, the entire arrays cannot reside
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m in primary storage, but only portions thereof. This means that the speed advantage of

the outer product method is now lost when computing large matrices, because the matrix

elements are not equally accessible! A second tacit assumption is that all arithmetical

operations of the same type are equivalent both in cost and in accuracy. This too is

violated when n is large.

I Thus we cannot simply dismiss the use of the intermediate product representations

when n is large. To improve the efficiency of the computation in this situation, it is

I necessary to maximize the use that is made of the matrix element data on a given matrix

mask (containing parts of A or B) while it is in primary storage. It is probably

advantageous to store matrix elements by columns. This is precisely what the column

intermediate representation does: Ce, is formed as a linear combination of Aek with

combination coefficient drawn from Bej. Obviously one can choose to stow rows so that

the row intermediate representations is appropriate. In this scenario, we can only achieve

a factor of n in the parallelism in order to accommodate the storage problem. There

3 is also the bookkeeping question as to eticient storage and subsequent manipulation of

the matrix elements in accordance with the particular algorithm requirements. Reference

3 is made to Hockney and Jesshope [131 for an overview of such considerations in digital

electronic computers.

One possible solution for increasing parallelism when n is large via partitioning. The

idea is certainly not new as witness the recent paper by Caulfied et al. [31 who choose to

use 2 x 2 matrices for the partitioning. Another viable approach, using the formalism

of Appendix A, is the following. Suppose that A, B and C are partitioned into

submatrices. This means that the partitioning of the rows of A and those of C is the

I same, that the partitioning of the columns of B and those of C is the same, and that the

partitioning of the columns of A and of the rows of B is the same. The matrix product

3 can then be formed blockwise. The foregoing remains valid if transcribed by replacing

ej by E,, etc. Ei is the i-th block column of the appropriately partitioned identity

I matrix: the appropriate partitioning being that which is symmetric with respect to rows

and columns for the matrix multiplication in question. Consequently, we recognize AE,

10U
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as the j-th block column of A, E-A as the i-th block row of A, and E4AE, as the

(z,j)-th block element of A; thus we haveI

k

I It may be possible to store large matrices in partitioned form, with the natural units to

be stored and manipulated being the submatrices constituting the blocks.

What of the other approaches as influenced by the storage problem? The reductionI
to an equivalent matrix-vector problem advocated by Barakat [4] suffers the same fate as

the outer product representation when n is large in that all the matrix elements are not

I equally accessible. Reference to [41, see Eq. (1), shows that the Roth column decomposition

of AB contains replicas of the matrix A along the principal diagonal; so that in this

version all the matrix elements cannot be held in primary storage. Thus for large n, the

parallelism inherent in the general reduction to the Roth column decomposition for matrix-

vector multiplications is inhibited. However, there is also a Roth row decomposition of

3 AB, see Eq. (4) of [4], in which the matrix elements of A are now spread along diagonals.

It was hoped, in view of the previous work by Madsen, et al. [14] on matrix multiplication

3 by diagonals, that the storage problem could be circumvented. A detailed analysis which

we need not reproduce indicates that the row decomposition is no more efficient than the

3 column decomposition as regards the primary storage of matrix elements.

3 Finally we come to the algorithm of the present paper. The implementation of the

algorithm as discussed in Section 3 bears directly upon the storage problem. When the

5matrices are large enough to violate the equal accessibility condition, we can still maintain

a reduced degree of parallelism because the convolution algorithm does not require the

3 rather complicated bookkeeping that the column middle product decomposition necessi-

tates before calculations can be carried out. Even though we cannot simultaneously store

3 al the matrix elements of A and B, the convolution algorithm only requires the rows of

A to be stored on separate optical masks so they can interact with the successive columns

I 1



(in reverse order) of B sequentially stand on optical masks to produce the various rows ot

C. Consequently when both A and B are large, we can still maintain a degree of par-

allelism because we do not require all the matrix elements of A and B to be in primary

storage simultaneously. All we need in primary storage are the respective row and column

of A and B. Thus, the polynomial convolution algorithm seems to be more irumune

to the storage problem than do the algorithms in [2,41. This is because both the outer

I product and Kronecker product decomposition algorithms are not modular in structure:

if the equal accessibility condition is violated there is no way to patch them up to work in

the situation where the matrices are very large. It may be possible to employ partitioning

3 as described in [13] or in the present paper; however, the bookkeeping is probably going t

be a significant obstacle.

I
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APPENDIX A

The purpose of this appendix is to outline an efficient formalism (due to our colleague

D. G. M. Anderson, unpublished) describing the inner product, intermediate product, and

3 outer product representations of matrix multiplication. We further employ this formalism

to discuss matrix partitioning, see Eq. (4.1).

I To begin we avoid unnecessary complications by assuming that the two matrices, call

them A and B, are square. It is also convenient to use the vector ek which is the k-th

column of the unit matrix, i.e.,I
n

I k=- eket (..)

k=1I

and the plus sign denotes the transpose (thus e + is a row vector). Given the square

matrix A, we have

I j-th colum of A = Aej

3 i-th row of A =eL+A

g (i,j)-th element of A = e+ Ae j .

The usual element representation of the matrix product C = AB reads in the above

I notation

I
eCc, = , (e'Aek)(CDej (A.2)

The element representation is the old fashioned way that matrices were multiplied before

I high level programming languages were invented.

3 To obtain the ifnnr product represefdation, we begin with the element representation,

Eq. (A.2), and delete the parenthesis on the right hand side, thus

I13



e1 Cej e,+ACke+Be,

I

k k

* - (C, A) (Be))~k
- (cT+a)(ne,) (A..3)

The reason it is termed the inner product representation is that the matrices A and 13

are sandwiched between the unit vectors.

I At the other extreme, we have the outer product representation which we obtain in3 the following fashion from the element representation, Eq. (A.2):

I et~~~e, = ~~ e1
1 Aek~c~ + B e z(e)(tl]

Consequently

C : (Aek)(e+-) (.4.3)

'rhe reason it is termed the outer product representation is that the matrices A and 1

now reside at the extreme left and right of the summation. This expression can be shown3 to be equivalent to the expression given in Athale and Collins [21, see their Eq. (2).

We next consider two intermediate representations which we term the column inter-

mediate product representation and the row intermediate product representatilon. We return

I again to Eq. (A.2):

e~Ce, = e,'Aekc~B,=e (Aek)[C(1(Bej (A1.6)
k k

1 14
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5 or

Ce, = Z-(ACk)(flej) (..7)Ik
This is the column intermediate product. The corresponding row intermediate product isI

I c.,c - *\ I(tA)ckl(&B)e, (A.s)

I k

5 or

I e,+C = e [(e,+A)ekj~e'B) .(.9)

k

It is a straightforward exercise to extend the above formalism to accommodate rect-

5 angular matrices, we omit the details.

I
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Table I. Listing of the p, q and r coefficients for the

case wheru A is 2 A 2, B is 2 x 3 and C is 2 3.

__ P Jqt r.

I0 11

1 a 2  b1 1 c21

2 0 22

3 0 b12 c12

b23

I U b13 c13

3 6 a 2 1

I 
.

9 0 c 2 2

10 0

11 0 C 2 3

12 0i
i
I
I



I.o

C'

00

a>

CD

I5 Ei4(

-4 0

-C4

Cu 14

1-4JIm


